These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17766293)

  • 21. Effects of self-generated wind on compensational recovery of escape direction in unilaterally cercus-ablated crickets, Gryllus bimaculatus.
    Takuwa H; Ota S; Kanou M
    Zoolog Sci; 2008 Mar; 25(3):235-41. PubMed ID: 18393559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response properties of wind-sensitive giant interneurons in the fourth-instar nymphs of the cricket, Gryllus bimaculatus.
    Matsuura T; Kanou M
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Sep; 142(1):1-9. PubMed ID: 16125990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Interactions of distant mechanoreceptor systems during presentation of non-strain specific acoustic signals to normal and allatectomized male crickets Gryllus bimaculatus].
    Kniazev AN; Ivanov VP; Vorob'eva ON
    Zh Evol Biokhim Fiziol; 2000; 36(5):424-30. PubMed ID: 11190141
    [No Abstract]   [Full Text] [Related]  

  • 24. Post-molting development of wind-elicited escape behavior in the cricket.
    Sato N; Shidara H; Ogawa H
    J Insect Physiol; 2017 Nov; 103():36-46. PubMed ID: 29030316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of serotonergic and opioidergic drugs on escape behaviors and social status of male crickets.
    Dyakonova VE; Schürmann F; Sakharov DA
    Naturwissenschaften; 1999 Sep; 86(9):435-7. PubMed ID: 10501691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crickets alter wind-elicited escape strategies depending on acoustic context.
    Fukutomi M; Ogawa H
    Sci Rep; 2017 Nov; 7(1):15158. PubMed ID: 29123249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Context-dependent variability in the components of fish escape response: integrating locomotor performance and behavior.
    Domenici P
    J Exp Zool A Ecol Genet Physiol; 2010 Feb; 313(2):59-79. PubMed ID: 20073047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Movement analyses of wood cricket ( Nemobius sylvestris) (Orthoptera: Gryllidae).
    Brouwers NC; Newton AC
    Bull Entomol Res; 2010 Dec; 100(6):623-34. PubMed ID: 20003571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Just drop it and run: the effect of limb autotomy on running distance and locomotion energetics of field crickets (Gryllus bimaculatus).
    Fleming PA; Bateman PW
    J Exp Biol; 2007 Apr; 210(Pt 8):1446-54. PubMed ID: 17401127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insect behaviour: migratory bands give crickets protection.
    Sword GA; Lorch PD; Gwynne DT
    Nature; 2005 Feb; 433(7027):703. PubMed ID: 15716941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conserved features of chronic stress across phyla: the effects of long-term stress on behavior and the concentration of the neurohormone octopamine in the cricket, Gryllus texensis.
    Adamo SA; Baker JL
    Horm Behav; 2011 Nov; 60(5):478-83. PubMed ID: 21824475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ measurement of calling metabolic rate in an Australian mole cricket, Gryllotalpa monanka.
    White CR; Matthews PG; Seymour RS
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun; 150(2):217-21. PubMed ID: 17049289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predator avoidance performance of larval fathead minnows (Pimephales promelas) following short-term exposure to estrogen mixtures.
    McGee MR; Julius ML; Vajda AM; Norris DO; Barber LB; Schoenfuss HL
    Aquat Toxicol; 2009 Mar; 91(4):355-61. PubMed ID: 19162341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental control of ultrasound sensitivity by a juvenile hormone analog in crickets (Teleogryllus oceanicus).
    Narbonne R; Pollack GS
    J Insect Physiol; 2008 Dec; 54(12):1552-6. PubMed ID: 18938172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial light at night prolongs juvenile development time in the black field cricket, Teleogryllus commodus.
    Durrant J; Botha LM; Green MP; Jones TM
    J Exp Zool B Mol Dev Evol; 2018 Jun; 330(4):225-233. PubMed ID: 29862646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparing for escape: anti-predator posture and fast-start performance in gobies.
    Turesson H; Satta A; Domenici P
    J Exp Biol; 2009 Sep; 212(18):2925-33. PubMed ID: 19717674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments.
    de Farias-Martins F; Sperber CF; Albeny-Simões D; Breaux JA; Fianco M; Szinwelski N
    PLoS One; 2017; 12(10):e0185800. PubMed ID: 28977023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic similarity despite striking behavioral divergence: aerobic performance in low- and high-density forms of the Mormon cricket.
    Chappell MA; Bailey NW; Redak RA; Antolin M; Zuk M
    Physiol Biochem Zool; 2009; 82(5):405-18. PubMed ID: 19642949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Haze, clouds and limited sky visibility: polarotactic orientation of crickets under difficult stimulus conditions.
    Henze MJ; Labhart T
    J Exp Biol; 2007 Sep; 210(Pt 18):3266-76. PubMed ID: 17766304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neuromorphic hair sensor model of wind-mediated escape in the cricket.
    Chapman T; Webb B
    Int J Neural Syst; 1999 Oct; 9(5):397-403. PubMed ID: 10630468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.