BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 17766347)

  • 1. Zwitterionic phospholipids and sterols modulate antimicrobial peptide-induced membrane destabilization.
    Mason AJ; Marquette A; Bechinger B
    Biophys J; 2007 Dec; 93(12):4289-99. PubMed ID: 17766347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol.
    Czub J; Baginski M
    Biophys J; 2006 Apr; 90(7):2368-82. PubMed ID: 16399829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane selectivity by W-tagging of antimicrobial peptides.
    Schmidtchen A; Ringstad L; Kasetty G; Mizuno H; Rutland MW; Malmsten M
    Biochim Biophys Acta; 2011 Apr; 1808(4):1081-91. PubMed ID: 21192916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes.
    Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F
    Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between the binding to and permeabilization of phospholipid bilayer membranes by GS14dK4, a designed analog of the antimicrobial peptide gramicidin S.
    Abraham T; Marwaha S; Kobewka DM; Lewis RN; Prenner EJ; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 2007 Sep; 1768(9):2089-98. PubMed ID: 17686454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of indolicidin association with model lipid bilayers.
    Hsu JC; Yip CM
    Biophys J; 2007 Jun; 92(12):L100-2. PubMed ID: 17416617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spectroscopic study of the membrane interaction of the antimicrobial peptide Pleurocidin.
    Mason AJ; Chotimah IN; Bertani P; Bechinger B
    Mol Membr Biol; 2006; 23(2):185-94. PubMed ID: 16754361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sterol carrier protein-2 amino terminus: a membrane interaction domain.
    Huang H; Ball JM; Billheimer JT; Schroeder F
    Biochemistry; 1999 Oct; 38(40):13231-43. PubMed ID: 10529196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study.
    Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH
    Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity of cateslytin for fungi: the role of acidic lipid-ergosterol membrane fluidity in antimicrobial action.
    Jean-François F; Desbat B; Dufourc EJ
    FASEB J; 2009 Nov; 23(11):3692-701. PubMed ID: 19571037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes.
    Balla MS; Bowie JH; Separovic F
    Eur Biophys J; 2004 Apr; 33(2):109-16. PubMed ID: 13680211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical basis for membrane-charge selectivity of cationic antimicrobial peptides.
    Taheri-Araghi S; Ha BY
    Phys Rev Lett; 2007 Apr; 98(16):168101. PubMed ID: 17501466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal behavior of membranes with sterols.
    Henriksen J; Rowat AC; Brief E; Hsueh YW; Thewalt JL; Zuckermann MJ; Ipsen JH
    Biophys J; 2006 Mar; 90(5):1639-49. PubMed ID: 16326903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study.
    Cournia Z; Ullmann GM; Smith JC
    J Phys Chem B; 2007 Feb; 111(7):1786-801. PubMed ID: 17261058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline-15 creates an amphipathic wedge in maculatin 1.1 peptides that drives lipid membrane disruption.
    Sani MA; Lee TH; Aguilar MI; Separovic F
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2277-89. PubMed ID: 26079051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.