These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17766348)

  • 1. An activation gating switch in Kv1.2 is localized to a threonine residue in the S2-S3 linker.
    Rezazadeh S; Kurata HT; Claydon TW; Kehl SJ; Fedida D
    Biophys J; 2007 Dec; 93(12):4173-86. PubMed ID: 17766348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and slow voltage sensor rearrangements during activation gating in Kv1.2 channels detected using tetramethylrhodamine fluorescence.
    Horne AJ; Peters CJ; Claydon TW; Fedida D
    J Gen Physiol; 2010 Jul; 136(1):83-99. PubMed ID: 20584892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating charge immobilization caused by the transition between inactivated states in the Kv1.5 channel.
    Wang Z; Fedida D
    Biophys J; 2001 Nov; 81(5):2614-27. PubMed ID: 11606275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kv Channel S1-S2 Linker Working as a Binding Site of Human β-Defensin 2 for Channel Activation Modulation.
    Feng J; Yang W; Xie Z; Xiang F; Cao Z; Li W; Hu H; Chen Z; Wu Y
    J Biol Chem; 2015 Jun; 290(25):15487-15495. PubMed ID: 25944908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials.
    Watanabe I; Zhu J; Sutachan JJ; Gottschalk A; Recio-Pinto E; Thornhill WB
    Brain Res; 2007 May; 1144():1-18. PubMed ID: 17324383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-tracking of activation gating in human ERG channels reveals rapid S4 movement and slow pore opening.
    Es-Salah-Lamoureux Z; Fougere R; Xiong PY; Robertson GA; Fedida D
    PLoS One; 2010 May; 5(5):e10876. PubMed ID: 20526358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the S2 and S3 segment in determining the activation kinetics in Kv2.1 channels.
    Koopmann R; Scholle A; Ludwig J; Leicher T; Zimmer T; Pongs O; Benndorf K
    J Membr Biol; 2001 Jul; 182(1):49-59. PubMed ID: 11426299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of frequency-dependent regulation of Kv1.2-containing potassium channels.
    Baronas VA; Yang R; Vilin YY; Kurata HT
    Channels (Austin); 2016; 10(2):158-66. PubMed ID: 26646078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Kv1.2 intracellular regions on activation of Kv2.1 channels.
    Scholle A; Zimmer T; Koopmann R; Engeland B; Pongs O; Benndorf K
    Biophys J; 2004 Aug; 87(2):873-82. PubMed ID: 15298895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving gating charges through the gating pore in a Kv channel voltage sensor.
    Lacroix JJ; Hyde HC; Campos FV; Bezanilla F
    Proc Natl Acad Sci U S A; 2014 May; 111(19):E1950-9. PubMed ID: 24782544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations.
    Goodchild SJ; Xu H; Es-Salah-Lamoureux Z; Ahern CA; Fedida D
    J Gen Physiol; 2012 Nov; 140(5):495-511. PubMed ID: 23071269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.
    Ishida IG; Rangel-Yescas GE; Carrasco-Zanini J; Islas LD
    J Gen Physiol; 2015 Apr; 145(4):345-58. PubMed ID: 25779871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kv1 potassium channel C-terminus constant HRETE region: arginine substitution affects surface protein level and conductance level of subfamily members differentially.
    Zhu J; Gomez B; Watanabe I; Thornhill WB
    Mol Membr Biol; 2007; 24(3):194-205. PubMed ID: 17520476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of mammalian Shaker-related K+ channels: evidence for non-conducting closed and non-conducting inactivated states.
    Jäger H; Rauer H; Nguyen AN; Aiyar J; Chandy KG; Grissmer S
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):291-301. PubMed ID: 9490854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environment of the gating charges in the Kv1.2 Shaker potassium channel.
    Treptow W; Tarek M
    Biophys J; 2006 May; 90(9):L64-6. PubMed ID: 16533847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-glycans modulate K(v)1.5 gating but have no effect on K(v)1.4 gating.
    Schwetz TA; Norring SA; Bennett ES
    Biochim Biophys Acta; 2010 Mar; 1798(3):367-75. PubMed ID: 19961828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel.
    Kim I; Warshel A
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2128-33. PubMed ID: 24464485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the Shaker K(+) channel gating kinetics by the S3-S4 linker.
    Gonzalez C; Rosenman E; Bezanilla F; Alvarez O; Latorre R
    J Gen Physiol; 2000 Feb; 115(2):193-208. PubMed ID: 10653896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate-limiting reactions determining different activation kinetics of Kv1.2 and Kv2.1 channels.
    Scholle A; Dugarmaa S; Zimmer T; Leonhardt M; Koopmann R; Engeland B; Pongs O; Benndorf K
    J Membr Biol; 2004 Mar; 198(2):103-12. PubMed ID: 15138750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-gated K+ channels contain multiple intersubunit association sites.
    Tu L; Santarelli V; Sheng Z; Skach W; Pain D; Deutsch C
    J Biol Chem; 1996 Aug; 271(31):18904-11. PubMed ID: 8702552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.