BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

956 related articles for article (PubMed ID: 17766350)

  • 21. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.
    Krause MR; Regen SL
    Acc Chem Res; 2014 Dec; 47(12):3512-21. PubMed ID: 25310179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids.
    Goh MWS; Tero R
    Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183626. PubMed ID: 33901442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A lipid matrix model of membrane raft structure.
    Quinn PJ
    Prog Lipid Res; 2010 Oct; 49(4):390-406. PubMed ID: 20478335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lateral diffusion coefficients of separate lipid species in a ternary raft-forming bilayer: a Pfg-NMR multinuclear study.
    Orädd G; Westerman PW; Lindblom G
    Biophys J; 2005 Jul; 89(1):315-20. PubMed ID: 15863478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry.
    St Clair JW; Kakuda S; London E
    Biophys J; 2020 Aug; 119(3):483-492. PubMed ID: 32710822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulating the size and stabilization of lipid raft-like domains and using calcium ions as their probe.
    Szekely O; Schilt Y; Steiner A; Raviv U
    Langmuir; 2011 Dec; 27(24):14767-75. PubMed ID: 22066979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol.
    Lin WC; Blanchette CD; Longo ML
    Biophys J; 2007 Apr; 92(8):2831-41. PubMed ID: 17237202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR.
    Holland GP; McIntyre SK; Alam TM
    Biophys J; 2006 Jun; 90(11):4248-60. PubMed ID: 16533851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy.
    Bartels T; Lankalapalli RS; Bittman R; Beyer K; Brown MF
    J Am Chem Soc; 2008 Nov; 130(44):14521-32. PubMed ID: 18839945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of cyclodextrin for AFM monitoring of model raft formation.
    Giocondi MC; Milhiet PE; Dosset P; Le Grimellec C
    Biophys J; 2004 Feb; 86(2):861-9. PubMed ID: 14747321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid.
    Silva LC; de Almeida RF; Castro BM; Fedorov A; Prieto M
    Biophys J; 2007 Jan; 92(2):502-16. PubMed ID: 17056734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid Raft Formation: Key Role of Polyunsaturated Phospholipids.
    Wang C; Yu Y; Regen SL
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1639-1642. PubMed ID: 28067450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains.
    Pathak P; London E
    Biophys J; 2015 Oct; 109(8):1630-8. PubMed ID: 26488654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition.
    Niu SL; Litman BJ
    Biophys J; 2002 Dec; 83(6):3408-15. PubMed ID: 12496107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Steroid structural requirements for stabilizing or disrupting lipid domains.
    Wenz JJ; Barrantes FJ
    Biochemistry; 2003 Dec; 42(48):14267-76. PubMed ID: 14640695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.