BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17766385)

  • 1. Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation.
    Goldstein RA
    Protein Sci; 2007 Sep; 16(9):1887-95. PubMed ID: 17766385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water.
    Ladenstein R; Antranikian G
    Adv Biochem Eng Biotechnol; 1998; 61():37-85. PubMed ID: 9670797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A comparison of amino acid composition of proteins from thermophiles and mesophiles].
    Lu B; Wang G; Huang P
    Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):20-5. PubMed ID: 12549384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stability of thermophilic proteins: a study based on comprehensive genome comparison.
    Das R; Gerstein M
    Funct Integr Genomics; 2000 May; 1(1):76-88. PubMed ID: 11793224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein's structural organization.
    Sengupta D; Kundu S
    BMC Bioinformatics; 2012 Jun; 13():142. PubMed ID: 22720789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow unfolding of monomeric proteins from hyperthermophiles with reversible unfolding.
    Mukaiyama A; Takano K
    Int J Mol Sci; 2009 Mar; 10(3):1369-1385. PubMed ID: 19399254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-dependent relationships between growth temperature of prokaryotes and the amino acid frequency in their proteins.
    Saelensminde G; Halskau Ø; Helland R; Willassen NP; Jonassen I
    Extremophiles; 2007 Jul; 11(4):585-96. PubMed ID: 17429573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid contacts in proteins adapted to different temperatures: hydrophobic interactions and surface charges play a key role.
    Saelensminde G; Halskau Ø; Jonassen I
    Extremophiles; 2009 Jan; 13(1):11-20. PubMed ID: 18825305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics perspective on the protein thermal stability: a case study using SAICAR synthetase.
    Manjunath K; Sekar K
    J Chem Inf Model; 2013 Sep; 53(9):2448-61. PubMed ID: 23962324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyr51: Key Determinant of the Low Thermostability of the Colwellia psychrerythraea Cold-Shock Protein.
    Lee Y; Kwak C; Jeong KW; Durai P; Ryu KS; Kim EH; Cheong C; Ahn HC; Kim HJ; Kim Y
    Biochemistry; 2018 Jul; 57(26):3625-3640. PubMed ID: 29737840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid coupling patterns in thermophilic proteins.
    Liang HK; Huang CM; Ko MT; Hwang JK
    Proteins; 2005 Apr; 59(1):58-63. PubMed ID: 15688447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles.
    Greaves RB; Warwicker J
    BMC Struct Biol; 2007 Mar; 7():18. PubMed ID: 17394655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution.
    Tanner JJ; Hecht RM; Krause KL
    Biochemistry; 1996 Feb; 35(8):2597-609. PubMed ID: 8611563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of main chain and side chain atoms and their locations to the stability of thermophilic proteins.
    Tompa DR; Gromiha MM; Saraboji K
    J Mol Graph Model; 2016 Mar; 64():85-93. PubMed ID: 26811870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii.
    Saunders NF; Thomas T; Curmi PM; Mattick JS; Kuczek E; Slade R; Davis J; Franzmann PD; Boone D; Rusterholtz K; Feldman R; Gates C; Bench S; Sowers K; Kadner K; Aerts A; Dehal P; Detter C; Glavina T; Lucas S; Richardson P; Larimer F; Hauser L; Land M; Cavicchioli R
    Genome Res; 2003 Jul; 13(7):1580-8. PubMed ID: 12805271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective factors in thermostability of thermophilic proteins.
    Sadeghi M; Naderi-Manesh H; Zarrabi M; Ranjbar B
    Biophys Chem; 2006 Feb; 119(3):256-70. PubMed ID: 16253416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximal stabilities of reversible two-state proteins.
    Kumar S; Tsai CJ; Nussinov R
    Biochemistry; 2002 Apr; 41(17):5359-74. PubMed ID: 11969396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow unfolding explains high stability of thermostable ferredoxins: common mechanism governing thermostability?
    Wittung-Stafshede P
    Biochim Biophys Acta; 2004 Jul; 1700(1):1-4. PubMed ID: 15210118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural differences between thermophilic and mesophilic membrane proteins.
    Meruelo AD; Han SK; Kim S; Bowie JU
    Protein Sci; 2012 Nov; 21(11):1746-53. PubMed ID: 23001966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.