These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17766385)

  • 21. Probing the determinants of protein stability: comparison of class A beta-lactamases.
    Vanhove M; Houba S; b1motte-Brasseur J; Frère JM
    Biochem J; 1995 Jun; 308 ( Pt 3)(Pt 3):859-64. PubMed ID: 8948443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins.
    Elcock AH
    J Mol Biol; 1998 Nov; 284(2):489-502. PubMed ID: 9813132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus.
    Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA
    J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study.
    Chakravarty S; Varadarajan R
    Biochemistry; 2002 Jun; 41(25):8152-61. PubMed ID: 12069608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae.
    Pollo SM; Zhaxybayeva O; Nesbø CL
    Can J Microbiol; 2015 Sep; 61(9):655-70. PubMed ID: 26211682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preferred codons and amino acid couples in hyperthermophiles.
    De Farias ST; Bonato MC
    Genome Biol; 2002 Jul; 3(8):PREPRINT0006. PubMed ID: 12186639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges.
    Panja AS; Bandopadhyay B; Maiti S
    PLoS One; 2015; 10(7):e0131495. PubMed ID: 26177372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unique amino acid composition of proteins in halophilic bacteria.
    Fukuchi S; Yoshimune K; Wakayama M; Moriguchi M; Nishikawa K
    J Mol Biol; 2003 Mar; 327(2):347-57. PubMed ID: 12628242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors enhancing protein thermostability.
    Kumar S; Tsai CJ; Nussinov R
    Protein Eng; 2000 Mar; 13(3):179-91. PubMed ID: 10775659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural basis for thermostability of beta-glycosidase from the thermophilic eubacterium Thermus nonproteolyticus HG102.
    Wang X; He X; Yang S; An X; Chang W; Liang D
    J Bacteriol; 2003 Jul; 185(14):4248-55. PubMed ID: 12837801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering a selectable marker for hyperthermophiles.
    Brouns SJ; Wu H; Akerboom J; Turnbull AP; de Vos WM; van der Oost J
    J Biol Chem; 2005 Mar; 280(12):11422-31. PubMed ID: 15640151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase.
    Vieille C; Epting KL; Kelly RM; Zeikus JG
    Eur J Biochem; 2001 Dec; 268(23):6291-301. PubMed ID: 11733026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Important inter-residue contacts for enhancing the thermal stability of thermophilic proteins.
    Gromiha MM
    Biophys Chem; 2001 Jun; 91(1):71-7. PubMed ID: 11403885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures.
    Nakashima H; Fukuchi S; Nishikawa K
    J Biochem; 2003 Apr; 133(4):507-13. PubMed ID: 12761299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finding the generalized molecular principles of protein thermal stability.
    Hait S; Mallik S; Basu S; Kundu S
    Proteins; 2020 Jun; 88(6):788-808. PubMed ID: 31872464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D; Mueller U; Heinemann U; Schmid FX
    Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein stability and enzyme activity at extreme biological temperatures.
    Feller G
    J Phys Condens Matter; 2010 Aug; 22(32):323101. PubMed ID: 21386475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases.
    Moon S; Bannen RM; Rutkoski TJ; Phillips GN; Bae E
    Proteins; 2014 Oct; 82(10):2631-42. PubMed ID: 24931334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.