These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 17766395)
1. Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Dembinsky D; Woll K; Saleem M; Liu Y; Fu Y; Borsuk LA; Lamkemeyer T; Fladerer C; Madlung J; Barbazuk B; Nordheim A; Nettleton D; Schnable PS; Hochholdinger F Plant Physiol; 2007 Nov; 145(3):575-88. PubMed ID: 17766395 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. Liu Y; von Behrens I; Muthreich N; Schütz W; Nordheim A; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):236-41. PubMed ID: 19962783 [TBL] [Abstract][Full Text] [Related]
3. Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Woll K; Borsuk LA; Stransky H; Nettleton D; Schnable PS; Hochholdinger F Plant Physiol; 2005 Nov; 139(3):1255-67. PubMed ID: 16215225 [TBL] [Abstract][Full Text] [Related]
4. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721 [TBL] [Abstract][Full Text] [Related]
5. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation. Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494 [TBL] [Abstract][Full Text] [Related]
6. A high-resolution tissue-specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes. Marcon C; Malik WA; Walley JW; Shen Z; Paschold A; Smith LG; Piepho HP; Briggs SP; Hochholdinger F Plant Physiol; 2015 May; 168(1):233-46. PubMed ID: 25780097 [TBL] [Abstract][Full Text] [Related]
7. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation. Yu P; Eggert K; von Wirén N; Li C; Hochholdinger F Plant Physiol; 2015 Sep; 169(1):690-704. PubMed ID: 26198256 [TBL] [Abstract][Full Text] [Related]
8. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns. Yu P; Baldauf JA; Lithio A; Marcon C; Nettleton D; Li C; Hochholdinger F Plant Physiol; 2016 Mar; 170(3):1783-98. PubMed ID: 26811190 [TBL] [Abstract][Full Text] [Related]
9. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707 [TBL] [Abstract][Full Text] [Related]
11. The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells. Alarcón MV; Lloret PG; Martín-Partido G; Salguero J J Plant Physiol; 2016 Mar; 192():105-10. PubMed ID: 26905196 [TBL] [Abstract][Full Text] [Related]
12. Integrated Analysis of Protein Abundance, Transcript Level, and Tissue Diversity To Reveal Developmental Regulation of Maize. Jia H; Sun W; Li M; Zhang Z J Proteome Res; 2018 Feb; 17(2):822-833. PubMed ID: 29250956 [TBL] [Abstract][Full Text] [Related]
13. Lateral roots affect the proteome of the primary root of maize (Zea mays L.). Hochholdinger F; Guo L; Schnable PS Plant Mol Biol; 2004 Oct; 56(3):397-412. PubMed ID: 15604752 [TBL] [Abstract][Full Text] [Related]
14. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. Hey S; Baldauf J; Opitz N; Lithio A; Pasha A; Provart N; Nettleton D; Hochholdinger F J Exp Bot; 2017 Apr; 68(9):2175-2185. PubMed ID: 28398587 [TBL] [Abstract][Full Text] [Related]
15. Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation. Muthreich N; Schützenmeister A; Schütz W; Madlung J; Krug K; Nordheim A; Piepho HP; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):242-9. PubMed ID: 19962210 [TBL] [Abstract][Full Text] [Related]
17. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey. Trevisan S; Manoli A; Ravazzolo L; Botton A; Pivato M; Masi A; Quaggiotti S J Exp Bot; 2015 Jul; 66(13):3699-715. PubMed ID: 25911739 [TBL] [Abstract][Full Text] [Related]
18. Non-syntenic genes drive RTCS-dependent regulation of the embryo transcriptome during formation of seminal root primordia in maize (Zea mays L.). Tai H; Opitz N; Lithio A; Lu X; Nettleton D; Hochholdinger F J Exp Bot; 2017 Jan; 68(3):403-414. PubMed ID: 28204533 [TBL] [Abstract][Full Text] [Related]
19. Proteomic changes in maize as a response to heavy metal (lead) stress revealed by iTRAQ quantitative proteomics. Li GK; Gao J; Peng H; Shen YO; Ding HP; Zhang ZM; Pan GT; Lin HJ Genet Mol Res; 2016 Jan; 15(1):. PubMed ID: 26909923 [TBL] [Abstract][Full Text] [Related]
20. Ontogeny of the maize shoot apical meristem. Takacs EM; Li J; Du C; Ponnala L; Janick-Buckner D; Yu J; Muehlbauer GJ; Schnable PS; Timmermans MC; Sun Q; Nettleton D; Scanlon MJ Plant Cell; 2012 Aug; 24(8):3219-34. PubMed ID: 22911570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]