These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 17766450)
1. Impact of pH on lactate formation and utilization by human fecal microbial communities. Belenguer A; Duncan SH; Holtrop G; Anderson SE; Lobley GE; Flint HJ Appl Environ Microbiol; 2007 Oct; 73(20):6526-33. PubMed ID: 17766450 [TBL] [Abstract][Full Text] [Related]
2. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Duncan SH; Louis P; Flint HJ Appl Environ Microbiol; 2004 Oct; 70(10):5810-7. PubMed ID: 15466518 [TBL] [Abstract][Full Text] [Related]
3. [Isolation and identification of a lactate-utilizing, butyrate-producing bacterium and its primary metabolic characteristics]. Liu W; Zhu WY; Yao W; Mao SY Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):435-40. PubMed ID: 17672301 [TBL] [Abstract][Full Text] [Related]
4. Fecal microbiota of piglets prefer utilizing DL-lactate mixture as compared to D-lactate and L-lactate in vitro. Su Y; Li B; Zhu WY Anaerobe; 2013 Feb; 19():27-33. PubMed ID: 23201433 [TBL] [Abstract][Full Text] [Related]
5. Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model. Sato T; Matsumoto K; Okumura T; Yokoi W; Naito E; Yoshida Y; Nomoto K; Ito M; Sawada H FEMS Microbiol Ecol; 2008 Dec; 66(3):528-36. PubMed ID: 18554304 [TBL] [Abstract][Full Text] [Related]
6. Rates of production and utilization of lactate by microbial communities from the human colon. Belenguer A; Holtrop G; Duncan SH; Anderson SE; Calder AG; Flint HJ; Lobley GE FEMS Microbiol Ecol; 2011 Jul; 77(1):107-19. PubMed ID: 21395623 [TBL] [Abstract][Full Text] [Related]
8. Pivotal Roles for pH, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem. Wang SP; Rubio LA; Duncan SH; Donachie GE; Holtrop G; Lo G; Farquharson FM; Wagner J; Parkhill J; Louis P; Walker AW; Flint HJ mSystems; 2020 Sep; 5(5):. PubMed ID: 32900872 [TBL] [Abstract][Full Text] [Related]
9. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Walker AW; Duncan SH; McWilliam Leitch EC; Child MW; Flint HJ Appl Environ Microbiol; 2005 Jul; 71(7):3692-700. PubMed ID: 16000778 [TBL] [Abstract][Full Text] [Related]
10. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Belenguer A; Duncan SH; Calder AG; Holtrop G; Louis P; Lobley GE; Flint HJ Appl Environ Microbiol; 2006 May; 72(5):3593-9. PubMed ID: 16672507 [TBL] [Abstract][Full Text] [Related]
11. Consumption of partially hydrolysed guar gum stimulates Bifidobacteria and butyrate-producing bacteria in the human large intestine. Ohashi Y; Sumitani K; Tokunaga M; Ishihara N; Okubo T; Fujisawa T Benef Microbes; 2015; 6(4):451-5. PubMed ID: 25519526 [TBL] [Abstract][Full Text] [Related]
12. Lactate has the potential to promote hydrogen sulphide formation in the human colon. Marquet P; Duncan SH; Chassard C; Bernalier-Donadille A; Flint HJ FEMS Microbiol Lett; 2009 Oct; 299(2):128-34. PubMed ID: 19732152 [TBL] [Abstract][Full Text] [Related]
13. Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques. Child MW; Kennedy A; Walker AW; Bahrami B; Macfarlane S; Macfarlane GT FEMS Microbiol Ecol; 2006 Feb; 55(2):299-310. PubMed ID: 16420637 [TBL] [Abstract][Full Text] [Related]
14. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Duncan SH; Belenguer A; Holtrop G; Johnstone AM; Flint HJ; Lobley GE Appl Environ Microbiol; 2007 Feb; 73(4):1073-8. PubMed ID: 17189447 [TBL] [Abstract][Full Text] [Related]
15. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. Smith EA; Macfarlane GT J Appl Bacteriol; 1996 Sep; 81(3):288-302. PubMed ID: 8810056 [TBL] [Abstract][Full Text] [Related]
16. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. Bourriaud C; Robins RJ; Martin L; Kozlowski F; Tenailleau E; Cherbut C; Michel C J Appl Microbiol; 2005; 99(1):201-12. PubMed ID: 15960680 [TBL] [Abstract][Full Text] [Related]
17. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction. Biddle AS; Black SJ; Blanchard JL PLoS One; 2013; 8(10):e77599. PubMed ID: 24098591 [TBL] [Abstract][Full Text] [Related]
18. Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Ben-Amor K; Heilig H; Smidt H; Vaughan EE; Abee T; de Vos WM Appl Environ Microbiol; 2005 Aug; 71(8):4679-89. PubMed ID: 16085863 [TBL] [Abstract][Full Text] [Related]
19. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. Chassard C; Scott KP; Marquet P; Martin JC; Del'homme C; Dapoigny M; Flint HJ; Bernalier-Donadille A FEMS Microbiol Ecol; 2008 Dec; 66(3):496-504. PubMed ID: 18811647 [TBL] [Abstract][Full Text] [Related]
20. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Kovatcheva-Datchary P; Egert M; Maathuis A; Rajilić-Stojanović M; de Graaf AA; Smidt H; de Vos WM; Venema K Environ Microbiol; 2009 Apr; 11(4):914-26. PubMed ID: 19128319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]