These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17766450)

  • 41. Microbial species involved in production of 1,2-sn-diacylglycerol and effects of phosphatidylcholine on human fecal microbiota.
    Vulevic J; McCartney AL; Gee JM; Johnson IT; Gibson GR
    Appl Environ Microbiol; 2004 Sep; 70(9):5659-66. PubMed ID: 15345455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of transportation on fecal bacterial communities and fermentative activities in horses: impact of Saccharomyces cerevisiae CNCM I-1077 supplementation.
    Faubladier C; Chaucheyras-Durand F; da Veiga L; Julliand V
    J Anim Sci; 2013 Apr; 91(4):1736-44. PubMed ID: 23408806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn's Disease.
    Takahashi K; Nishida A; Fujimoto T; Fujii M; Shioya M; Imaeda H; Inatomi O; Bamba S; Sugimoto M; Andoh A
    Digestion; 2016; 93(1):59-65. PubMed ID: 26789999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of metabolism using stoichiometry in fermentative biohydrogen.
    Lee HS; Rittmann BE
    Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of dilution rate on the acidogenic phase products distribution during two-phase lactose anaerobiosis.
    Kisaalita WS; Lo KV; Pinder KL
    Biotechnol Bioeng; 1989 Dec; 34(10):1235-50. PubMed ID: 18588064
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition.
    Scheid D; Stubner S; Conrad R
    FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Validation of fluorescent in situ hybridization combined with flow cytometry for assessing interindividual variation in the composition of human fecal microflora during long-term storage of samples.
    Rochet V; Rigottier-Gois L; Rabot S; Doré J
    J Microbiol Methods; 2004 Nov; 59(2):263-70. PubMed ID: 15369862
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei.
    de Bok FA; Stams AJ; Dijkema C; Boone DR
    Appl Environ Microbiol; 2001 Apr; 67(4):1800-4. PubMed ID: 11282636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial community structure of ethanol type fermentation in bio-hydrogen production.
    Ren N; Xing D; Rittmann BE; Zhao L; Xie T; Zhao X
    Environ Microbiol; 2007 May; 9(5):1112-25. PubMed ID: 17472628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anaerobic caproate production on carbon chain elongation: Effect of lactate/butyrate ratio, concentration and operation mode.
    Xie S; Ma J; Li L; He Q; Xu P; Ke S; Shi Z
    Bioresour Technol; 2021 Jun; 329():124893. PubMed ID: 33690059
    [TBL] [Abstract][Full Text] [Related]  

  • 51. nZVI Impacts Substrate Conversion and Microbiome Composition in Chain Elongation From D- and L-Lactate Substrates.
    Contreras-Dávila CA; Esveld J; Buisman CJN; Strik DPBTB
    Front Bioeng Biotechnol; 2021; 9():666582. PubMed ID: 34211964
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development and validation of a continuous in vitro system reproducing some biotic and abiotic factors of the veal calf intestine.
    Gérard-Champod M; Blanquet-Diot S; Cardot JM; Bravo D; Alric M
    Appl Environ Microbiol; 2010 Aug; 76(16):5592-600. PubMed ID: 20581176
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amounts and species of probiotic lactic acid bacteria affect stimulation of short-chain fatty acid production in fecal batch culture.
    Ohashi Y; Fujisawa T
    Biosci Microbiota Food Health; 2023; 42(1):100-103. PubMed ID: 36660593
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutual Metabolic Interactions in Co-cultures of the Intestinal
    Bui TPN; Schols HA; Jonathan M; Stams AJM; de Vos WM; Plugge CM
    Front Microbiol; 2019; 10():2449. PubMed ID: 31736896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Presence of Butyrivibrio fibrisolvens in the digestive tract of dogs and cats, and its contribution to butyrate production.
    Asanuma N; Kawato M; Hino T
    J Gen Appl Microbiol; 2001 Dec; 47(6):313-319. PubMed ID: 12483606
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fecal anions and lactate in severe ulcerative colitis.
    Roediger WE
    Dig Dis Sci; 1989 Nov; 34(11):1801-2. PubMed ID: 2582991
    [No Abstract]   [Full Text] [Related]  

  • 57. Reductive carboxylation of propionate to butyrate in methanogenic ecosystems.
    Tholozan JL; Samain E; Grivet JP; Moletta R; Dubourguier HC; Albagnac G
    Appl Environ Microbiol; 1988 Feb; 54(2):441-5. PubMed ID: 16347557
    [TBL] [Abstract][Full Text] [Related]  

  • 58. pH and fecal microflora of healthy adults.
    Baqai R; Zuberi SJ
    J Pak Med Assoc; 1981 Feb; 31(2):42-3. PubMed ID: 6785486
    [No Abstract]   [Full Text] [Related]  

  • 59. Effect of temperature and pH on the growth of Caryophanon latum colonies.
    Moran JW; Witter LD
    Can J Microbiol; 1976 Sep; 22(9):1401-3. PubMed ID: 10073
    [No Abstract]   [Full Text] [Related]  

  • 60. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota.
    Reichardt N; Duncan SH; Young P; Belenguer A; McWilliam Leitch C; Scott KP; Flint HJ; Louis P
    ISME J; 2014 Jun; 8(6):1323-35. PubMed ID: 24553467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.