These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17767241)

  • 1. Parametric estimation of the square degree of polarization from two intensity images degraded by fully developed speckle noise.
    Roche M; Fade J; Réfrégier P
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2719-27. PubMed ID: 17767241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the polarization degree of polarimetric images in coherent illumination using maximum likelihood methods.
    Chatelain F; Tourneret JY; Roche M; Alouini M
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jun; 26(6):1348-59. PubMed ID: 19488174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the degree of polarization in active coherent imagery by using the natural representation.
    Réfrégier P; Goudail F; Roux N
    J Opt Soc Am A Opt Image Sci Vis; 2004 Dec; 21(12):2292-300. PubMed ID: 15603064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision of polarimetric orthogonal state contrast estimation in coherent images corrupted by speckle, Poisson, and additive noise.
    Dupont J; Boffety M; Goudail F
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):977-984. PubMed ID: 29877342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision of moment-based estimation of the degree of polarization in coherent imagery without polarization device.
    Fade J; Roche M; Réfrégier P
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):483-92. PubMed ID: 18246183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation precision of the degree of polarization from a single speckle intensity image.
    Réfrégier P; Fade J; Roche M
    Opt Lett; 2007 Apr; 32(7):739-41. PubMed ID: 17339920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speckle Filtering of GF-3 Polarimetric SAR Data with Joint Restriction Principle.
    Xie J; Li Z; Zhou C; Fang Y; Zhang Q
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29757231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional speckle-noise reduction by using coherent integral imaging.
    Moon I; Javidi B
    Opt Lett; 2009 Apr; 34(8):1246-8. PubMed ID: 19370132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invariant polarimetric contrast parameters of coherent light.
    Réfrégier P; Goudail F
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1223-33. PubMed ID: 12049361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target segmentation in active polarimetric images by use of statistical active contours.
    Goudail F; Réfrégier P
    Appl Opt; 2002 Feb; 41(5):874-83. PubMed ID: 11908215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cramer-Rao lower bound for the estimation of the degree of polarization in active coherent imagery at low photon levels.
    Réfrégier P; Roche M; Goudail F
    Opt Lett; 2006 Dec; 31(24):3565-7. PubMed ID: 17130904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical algorithms for target detection in coherent active polarimetric images.
    Goudail F; Réfrégier P
    J Opt Soc Am A Opt Image Sci Vis; 2001 Dec; 18(12):3049-60. PubMed ID: 11760202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional polarimetric integral imaging under low illumination conditions.
    Shen X; Carnicer A; Javidi B
    Opt Lett; 2019 Jul; 44(13):3230-3233. PubMed ID: 31259928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarimetric target detection in the presence of spatially fluctuating Mueller matrices.
    Anna G; Goudail F; Dolfi D
    Opt Lett; 2011 Dec; 36(23):4590-2. PubMed ID: 22139252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery.
    Wong A; Mishra A; Bizheva K; Clausi DA
    Opt Express; 2010 Apr; 18(8):8338-52. PubMed ID: 20588679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-wave infrared polarization imaging system for detecting moving scene.
    Yang M; Xu W; Sun Z; Wu H; Tian Y; Li L
    Opt Lett; 2020 Oct; 45(20):5884-5887. PubMed ID: 33057310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scene estimation from speckled synthetic aperture radar imagery: Markov-random-field approach.
    Lankoande O; Hayat MM; Santhanam B
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jun; 23(6):1269-81. PubMed ID: 16715145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning-based denoising for polarimetric images.
    Li X; Li H; Lin Y; Guo J; Yang J; Yue H; Li K; Li C; Cheng Z; Hu H; Liu T
    Opt Express; 2020 May; 28(11):16309-16321. PubMed ID: 32549456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarimetric 3D integral imaging in photon-starved conditions.
    Carnicer A; Javidi B
    Opt Express; 2015 Mar; 23(5):6408-17. PubMed ID: 25836861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the contrast in polarimetric scalar images.
    Goudail F; Bénière A
    Opt Lett; 2009 May; 34(9):1471-3. PubMed ID: 19412309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.