These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 17767258)
1. Geometry and dynamics of squeezing in finite systems. Wolf KB; Krötzsch G J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2871-8. PubMed ID: 17767258 [TBL] [Abstract][Full Text] [Related]
2. Geometry and dynamics in the Fresnel transforms of discrete systems. Wolf KB; Krötzsch G J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2568-77. PubMed ID: 17767228 [TBL] [Abstract][Full Text] [Related]
3. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium. Yura HT; Thrane L; Andersen PE J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2464-74. PubMed ID: 11140505 [TBL] [Abstract][Full Text] [Related]
4. Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product. Oktem FS; Ozaktas HM J Opt Soc Am A Opt Image Sci Vis; 2010 Aug; 27(8):1885-95. PubMed ID: 20686595 [TBL] [Abstract][Full Text] [Related]
5. Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. Hennelly BM; Sheridan JT J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):917-27. PubMed ID: 15898552 [TBL] [Abstract][Full Text] [Related]
6. Discrete linear canonical transforms based on dilated Hermite functions. Pei SC; Lai YC J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1695-708. PubMed ID: 21811332 [TBL] [Abstract][Full Text] [Related]
7. Rotation and gyration of finite two-dimensional modes. Wolf KB; Alieva T J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):365-70. PubMed ID: 18246170 [TBL] [Abstract][Full Text] [Related]
8. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms. Pei SC; Ding JJ J Opt Soc Am A Opt Image Sci Vis; 2005 Mar; 22(3):460-74. PubMed ID: 15770983 [TBL] [Abstract][Full Text] [Related]
9. From Wigner hyperbolic rotation to fractional squeezing transformation. Wu WF; Fu P; Hu HK Heliyon; 2024 Mar; 10(6):e27590. PubMed ID: 38509940 [TBL] [Abstract][Full Text] [Related]
10. Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms. Healy JJ; Sheridan JT Opt Lett; 2010 Apr; 35(7):947-9. PubMed ID: 20364179 [TBL] [Abstract][Full Text] [Related]
11. Discrete normalized Bargmann transform through the gyrator transform. Uriostegui K J Opt Soc Am A Opt Image Sci Vis; 2020 Jun; 37(6):951-958. PubMed ID: 32543595 [TBL] [Abstract][Full Text] [Related]
12. Fractional Fourier transforms in two dimensions. Simon R; Wolf KB J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2368-81. PubMed ID: 11140497 [TBL] [Abstract][Full Text] [Related]
13. Covariant discretization of axis-symmetric linear optical systems. Atakishiyev NM; Nagiyev SM; Vicent LE; Wolf KB J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2301-14. PubMed ID: 11140490 [TBL] [Abstract][Full Text] [Related]
14. Universal invariants of quantum-mechanical and optical systems. Dodonov VV; Man'ko OV J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2403-10. PubMed ID: 11140500 [TBL] [Abstract][Full Text] [Related]
15. Exactly unitary discrete representations of the metaplectic transform for linear-time algorithms. Lopez NA; Dodin IY J Opt Soc Am A Opt Image Sci Vis; 2021 May; 38(5):634-643. PubMed ID: 33983268 [TBL] [Abstract][Full Text] [Related]
16. Geometry and dynamics in the fractional discrete Fourier transform. Wolf KB; Krötzsch G J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):651-8. PubMed ID: 17301854 [TBL] [Abstract][Full Text] [Related]
17. Finite signals in planar waveguides. Rueda-Paz J; Wolf KB J Opt Soc Am A Opt Image Sci Vis; 2011 Apr; 28(4):641-50. PubMed ID: 21478961 [TBL] [Abstract][Full Text] [Related]
18. Unitary discrete linear canonical transform: analysis and application. Zhao L; Healy JJ; Sheridan JT Appl Opt; 2013 Mar; 52(7):C30-6. PubMed ID: 23458814 [TBL] [Abstract][Full Text] [Related]
19. Implementation of general point transforms with diffractive optics. Roux FS Appl Opt; 1993 Sep; 32(26):4972-8. PubMed ID: 20856299 [TBL] [Abstract][Full Text] [Related]
20. Discrete Bargmann transform. Uriostegui K J Opt Soc Am A Opt Image Sci Vis; 2019 Aug; 36(8):1367-1373. PubMed ID: 31503562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]