These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17767267)

  • 1. Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient.
    Durant S; Calvo-Perez O; Vukadinovic N; Greffet JJ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2953-62. PubMed ID: 17767267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light scattering by a random distribution of particles embedded in absorbing media: diagrammatic expansion of the extinction coefficient.
    Durant S; Calvo-Perez O; Vukadinovic N; Greffet JJ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2943-52. PubMed ID: 17767266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency factors and radiation characteristics of spherical scatterers in an absorbing medium.
    Yin J; Pilon L
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2784-96. PubMed ID: 17047705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical solution of the time-dependent Maxwell's equations for random dielectric media.
    Harshawardhan W; Su Q; Grobe R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8705-12. PubMed ID: 11138172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the extinction coefficient of light in non-absorbing nanoparticle suspensions.
    Márquez-Islas R; García-Valenzuela A
    Appl Opt; 2018 May; 57(13):3390-3394. PubMed ID: 29726506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse light propagation in a turbid medium with varying refractive index: Monte Carlo modeling in a spherically symmetrical geometry.
    Shendeleva ML; Molloy JA
    Appl Opt; 2006 Sep; 45(27):7018-25. PubMed ID: 16946780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scattering of electromagnetic waves from dense distributions of spheroidal particles based on Monte Carlo simulations.
    Tsang L; Ding KH; Shih SE; Kong JA
    J Opt Soc Am A Opt Image Sci Vis; 1998 Oct; 15(10):2660-9. PubMed ID: 9768510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light scattering by an infinite circular cylinder immersed in an absorbing medium.
    Sun W; Loeb NG; Lin B
    Appl Opt; 2005 Apr; 44(12):2338-42. PubMed ID: 15861840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple scattering effects on optical characterization of biological tissue using spectroscopic scattering parameters.
    Yip W; Li X
    Opt Lett; 2008 Dec; 33(23):2877-9. PubMed ID: 19037458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extinction, absorption, and scattering of light by plasmonic spheres embedded in an absorbing host medium.
    Khlebtsov NG
    Phys Chem Chem Phys; 2021 Oct; 23(40):23141-23157. PubMed ID: 34617525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple scattering of acoustic waves and porous absorbing media.
    Tournat V; Pagneux V; Lafarge D; Jaouen L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026609. PubMed ID: 15447612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Merging Mie solutions and the radiative transport equation to measure optical properties of scattering particles in optical phantoms.
    Baez-Castillo L; Ortiz-Rascón E; Bruce NC; Garduño-Mejía J; Carrillo-Torres RC; Álvarez-Ramos ME
    Appl Opt; 2020 Nov; 59(33):10591-10598. PubMed ID: 33361994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer.
    Ghosh N; Pradhan A; Gupta PK; Gupta S; Jaiswal V; Singh RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066607. PubMed ID: 15697526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattered intensity of a wave propagating in a discrete random medium.
    Ma Y; Varadan VV; Varadan VK
    Appl Opt; 1988 Jun; 27(12):2469-77. PubMed ID: 20531779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2004 Jun; 29(12):1393-5. PubMed ID: 15233446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light scattering computation model for nonspherical aerosol particles based on multi-resolution time-domain scheme: model development and validation.
    Hu S; Gao T; Li H; Yang B; Zhang F; Chen M; Liu L
    Opt Express; 2017 Jan; 25(2):1463-1486. PubMed ID: 28158028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete dipole approximation method for electromagnetic scattering by particles in an absorbing host medium.
    Dong J; Zhang W; Liu L
    Opt Express; 2021 Mar; 29(5):7690-7705. PubMed ID: 33726265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equivalence of internal and external mixture schemes of single scattering properties in vector radiative transfer.
    Mukherjee L; Zhai PW; Hu Y; Winker DM
    Appl Opt; 2017 May; 56(14):4105-4112. PubMed ID: 29047543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete-dipole-approximation-based light-scattering calculations for particles with a real refractive index smaller than unity.
    Laczik Z
    Appl Opt; 1996 Jul; 35(19):3736-45. PubMed ID: 21102771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.