These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 17768306)
1. WOX gene phylogeny in Poaceae: a comparative approach addressing leaf and embryo development. Nardmann J; Zimmermann R; Durantini D; Kranz E; Werr W Mol Biol Evol; 2007 Nov; 24(11):2474-84. PubMed ID: 17768306 [TBL] [Abstract][Full Text] [Related]
2. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Dai M; Hu Y; Zhao Y; Liu H; Zhou DX Plant Physiol; 2007 May; 144(1):380-90. PubMed ID: 17351053 [TBL] [Abstract][Full Text] [Related]
3. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Taramino G; Sauer M; Stauffer JL; Multani D; Niu X; Sakai H; Hochholdinger F Plant J; 2007 May; 50(4):649-59. PubMed ID: 17425722 [TBL] [Abstract][Full Text] [Related]
4. Radial axis differentiation in a globular embryo is marked by HAZ1, a PHD-finger homeobox gene of rice. Ito Y; Chujo A; Eiguchi M; Kurata N Gene; 2004 Apr; 331():9-15. PubMed ID: 15094187 [TBL] [Abstract][Full Text] [Related]
5. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Phelps-Durr TL; Thomas J; Vahab P; Timmermans MC Plant Cell; 2005 Nov; 17(11):2886-98. PubMed ID: 16243907 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Davidson RM; Gowda M; Moghe G; Lin H; Vaillancourt B; Shiu SH; Jiang N; Robin Buell C Plant J; 2012 Aug; 71(3):492-502. PubMed ID: 22443345 [TBL] [Abstract][Full Text] [Related]
7. Specification of adaxial cell fate during maize leaf development. Juarez MT; Twigg RW; Timmermans MC Development; 2004 Sep; 131(18):4533-44. PubMed ID: 15342478 [TBL] [Abstract][Full Text] [Related]
8. Architecture of floral branch systems in maize and related grasses. Vollbrecht E; Springer PS; Goh L; Buckler ES; Martienssen R Nature; 2005 Aug; 436(7054):1119-26. PubMed ID: 16041362 [TBL] [Abstract][Full Text] [Related]
9. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Nardmann J; Ji J; Werr W; Scanlon MJ Development; 2004 Jun; 131(12):2827-39. PubMed ID: 15169755 [TBL] [Abstract][Full Text] [Related]
10. RAGGED SEEDLING2 is required for expression of KANADI2 and REVOLUTA homologues in the maize shoot apex. Henderson DC; Zhang X; Brooks L; Scanlon MJ Genesis; 2006 Aug; 44(8):372-82. PubMed ID: 16858691 [TBL] [Abstract][Full Text] [Related]
11. Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition. Pautler M; Tanaka W; Hirano HY; Jackson D Plant Cell Physiol; 2013 Mar; 54(3):302-12. PubMed ID: 23411664 [TBL] [Abstract][Full Text] [Related]
12. Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize ( Zea mays L.). Zhang S; Wong L; Meng L; Lemaux PG Planta; 2002 Jun; 215(2):191-4. PubMed ID: 12029467 [TBL] [Abstract][Full Text] [Related]
13. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Hibara K; Obara M; Hayashida E; Abe M; Ishimaru T; Satoh H; Itoh J; Nagato Y Dev Biol; 2009 Oct; 334(2):345-54. PubMed ID: 19665012 [TBL] [Abstract][Full Text] [Related]
14. Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. Luan W; Shen A; Jin Z; Song S; Li Z; Sha A Sci China Life Sci; 2013 Dec; 56(12):1113-23. PubMed ID: 24302292 [TBL] [Abstract][Full Text] [Related]
15. Expression and nucleotide diversity of the maize RIK gene. Buckner B; Swaggart KA; Wong CC; Smith HA; Aurand KM; Scanlon MJ; Schnable PS; Janick-Buckner D J Hered; 2008; 99(4):407-16. PubMed ID: 18310068 [TBL] [Abstract][Full Text] [Related]
16. Grass meristems II: inflorescence architecture, flower development and meristem fate. Tanaka W; Pautler M; Jackson D; Hirano HY Plant Cell Physiol; 2013 Mar; 54(3):313-24. PubMed ID: 23378448 [TBL] [Abstract][Full Text] [Related]
17. PLASTOCHRON3/GOLIATH encodes a glutamate carboxypeptidase required for proper development in rice. Kawakatsu T; Taramino G; Itoh J; Allen J; Sato Y; Hong SK; Yule R; Nagasawa N; Kojima M; Kusaba M; Sakakibara H; Sakai H; Nagato Y Plant J; 2009 Jun; 58(6):1028-40. PubMed ID: 19228340 [TBL] [Abstract][Full Text] [Related]
18. Cloning and expression analyses of sucrose non-fermenting-1-related kinase 1 (SnRK1b) gene during development of sorghum and maize endosperm and its implicated role in sugar-to-starch metabolic transition. Jain M; Li QB; Chourey PS Physiol Plant; 2008 Sep; 134(1):161-73. PubMed ID: 18433416 [TBL] [Abstract][Full Text] [Related]
19. Genetics and evolution of inflorescence and flower development in grasses. Bommert P; Satoh-Nagasawa N; Jackson D; Hirano HY Plant Cell Physiol; 2005 Jan; 46(1):69-78. PubMed ID: 15659432 [TBL] [Abstract][Full Text] [Related]
20. The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Nardmann J; Werr W Mol Biol Evol; 2006 Dec; 23(12):2492-504. PubMed ID: 16987950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]