These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 17768628)
21. Green fluorescent protein quantification in whole plants. Halfhill MD; Millwood RJ; Stewart CN Methods Mol Biol; 2005; 286():215-26. PubMed ID: 15310924 [TBL] [Abstract][Full Text] [Related]
22. Improved expression of recombinant GFP using a replicating vector based on Beet curly top virus in leaf-disks and infiltrated Nicotiana benthamiana leaves. Kim KI; Sunter G; Bisaro DM; Chung IS Plant Mol Biol; 2007 May; 64(1-2):103-12. PubMed ID: 17294255 [TBL] [Abstract][Full Text] [Related]
23. Construction vascular-specific expression bi-directional promoters in plants. Lv X; Song X; Rao G; Pan X; Guan L; Jiang X; Lu H J Biotechnol; 2009 May; 141(3-4):104-8. PubMed ID: 19433212 [TBL] [Abstract][Full Text] [Related]
24. Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Roberts IM; Boevink P; Roberts AG; Sauer N; Reichel C; Oparka KJ Protoplasma; 2001; 218(1-2):31-44. PubMed ID: 11732318 [TBL] [Abstract][Full Text] [Related]
25. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system. Fujiuchi N; Matsuda R; Matoba N; Fujiwara K Biotechnol Bioeng; 2016 Apr; 113(4):901-6. PubMed ID: 26461274 [TBL] [Abstract][Full Text] [Related]
26. Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching. Martens HJ; Roberts AG; Oparka KJ; Schulz A Plant Physiol; 2006 Oct; 142(2):471-80. PubMed ID: 16905664 [TBL] [Abstract][Full Text] [Related]
27. [Using green fluorescent protein as a reporter to monitor elimination of selectable marker genes from transgenic plants]. Jia HG; Lü LF; Pang YQ; Chen XY; Fang RX Sheng Wu Gong Cheng Xue Bao; 2004 Jan; 20(1):10-5. PubMed ID: 16108481 [TBL] [Abstract][Full Text] [Related]
28. Observer-based online compensation of inner filter effect in monitoring fluorescence of GFP-expressing plant cell cultures. Su WW; Liu B; Lu WB; Xu NS; Du GC; Tan JL Biotechnol Bioeng; 2005 Jul; 91(2):213-26. PubMed ID: 15915511 [TBL] [Abstract][Full Text] [Related]
29. Anchorage to the cytosolic face of the endoplasmic reticulum membrane: a new strategy to stabilize a cytosolic recombinant antigen in plants. Barbante A; Irons S; Hawes C; Frigerio L; Vitale A; Pedrazzini E Plant Biotechnol J; 2008 Aug; 6(6):560-75. PubMed ID: 18444969 [TBL] [Abstract][Full Text] [Related]
30. Assessment of CaMV-mediated gene silencing and integration of CaMV into GM plants with a 35S RNA promoter. Squires J; Stephens J; Shoelz JE; Palukaitis P Environ Biosafety Res; 2007; 6(4):259-70. PubMed ID: 18289501 [TBL] [Abstract][Full Text] [Related]
31. A cryohistological protocol for preparation of large plant tissue sections for screening intracellular fluorescent protein expression. Knapp E; Flores R; Scheiblin D; Scheiblin D; Modla S; Czymmek K; Czymmek K; Yusibov V Biotechniques; 2012 Jan; 52(1):31-7. PubMed ID: 22229725 [TBL] [Abstract][Full Text] [Related]
32. [Effect of the hydrophobin HFBI-fusion tag on exogenous protein accumulation in tobacco plant]. Zhang X; Mu H; Ma T; Ding X; Li Z; Wang S Nan Fang Yi Ke Da Xue Xue Bao; 2015 Dec; 35(12):1665-71. PubMed ID: 26714894 [TBL] [Abstract][Full Text] [Related]
33. Instrumentation and methodology for quantifying GFP fluorescence in intact plant organs. Millwood RJ; Halfhill MD; Harkins D; Russotti R; Stewart CN Biotechniques; 2003 Mar; 34(3):638-43. PubMed ID: 12661169 [TBL] [Abstract][Full Text] [Related]
34. High-level secretion of functional green fluorescent protein from transgenic tobacco cell cultures: characterization and sensing. Su WW; Guan P; Bugos RC Biotechnol Bioeng; 2004 Mar; 85(6):610-9. PubMed ID: 14966802 [TBL] [Abstract][Full Text] [Related]
35. 'Senescence-associated vacuoles' are involved in the degradation of chloroplast proteins in tobacco leaves. Martínez DE; Costa ML; Gomez FM; Otegui MS; Guiamet JJ Plant J; 2008 Oct; 56(2):196-206. PubMed ID: 18564383 [TBL] [Abstract][Full Text] [Related]
36. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Köhler RH; Zipfel WR; Webb WW; Hanson MR Plant J; 1997 Mar; 11(3):613-21. PubMed ID: 9107047 [TBL] [Abstract][Full Text] [Related]
37. [Heterologous expression and functional identification of a chitinase gene from wheat]. Li HP; Yao MJ; Liao YC Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Dec; 31(6):589-93. PubMed ID: 16361785 [TBL] [Abstract][Full Text] [Related]
38. [Morphological analysis of transgenic tobacco plants expressing the PnEXPA3 gene of black poplar (Populus nigra)]. Kuluev BR; Safiullina MG; Kniazev AV; Chemeris AV Ontogenez; 2013; 44(3):166-73. PubMed ID: 23885563 [TBL] [Abstract][Full Text] [Related]
39. Apple chlorotic leaf spot virus 50 kDa protein is targeted to plasmodesmata and accumulates in sieve elements in transgenic plant leaves. Yoshikawa N; Oogake S; Terada M; Miyabayashi S; Ikeda Y; Takahashi T; Ogawa K Arch Virol; 1999; 144(12):2475-83. PubMed ID: 10664400 [TBL] [Abstract][Full Text] [Related]
40. Expression of human papillomavirus type 16 L1 protein in transgenic tobacco plants. Liu HL; Li WS; Lei T; Zheng J; Zhang Z; Yan XF; Wang ZZ; Wang YL; Si LS Acta Biochim Biophys Sin (Shanghai); 2005 Mar; 37(3):153-8. PubMed ID: 15756416 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]