These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 17769675)
1. Topographic and geologic aspects of a far-side lunar crater. Hixon SB Science; 1968 Jan; 159(3813):420-1. PubMed ID: 17769675 [TBL] [Abstract][Full Text] [Related]
2. Topographic-compositional units on the moon and the early evolution of the lunar crust. Lucey PG; Spudis PD; Zuber M; Smith D; Malaret E Science; 1994 Dec; 266(5192):1855-8. PubMed ID: 17737081 [TBL] [Abstract][Full Text] [Related]
3. Lack of exposed ice inside lunar south pole Shackleton Crater. Haruyama J; Ohtake M; Matsunaga T; Morota T; Honda C; Yokota Y; Pieters CM; Hara S; Hioki K; Saiki K; Miyamoto H; Iwasaki A; Abe M; Ogawa Y; Takeda H; Shirao M; Yamaji A; Josset JL Science; 2008 Nov; 322(5903):938-9. PubMed ID: 18948501 [TBL] [Abstract][Full Text] [Related]
4. Al-khwarizmi: a new-found basin on the lunar far side. El-Baz F Science; 1973 Jun; 180(4091):1173-6. PubMed ID: 17743602 [TBL] [Abstract][Full Text] [Related]
5. Ancient multiring basins on the moon revealed by clementine laser altimetry. Spudis PD; Gillis JJ; Reisse RA Science; 1994 Dec; 266(5192):1848-51. PubMed ID: 17737079 [TBL] [Abstract][Full Text] [Related]
6. Global distribution of large lunar craters: implications for resurfacing and impactor populations. Head JW; Fassett CI; Kadish SJ; Smith DE; Zuber MT; Neumann GA; Mazarico E Science; 2010 Sep; 329(5998):1504-7. PubMed ID: 20847265 [TBL] [Abstract][Full Text] [Related]
7. Quantifying crater production and regolith overturn on the Moon with temporal imaging. Speyerer EJ; Povilaitis RZ; Robinson MS; Thomas PC; Wagner RV Nature; 2016 Oct; 538(7624):215-218. PubMed ID: 27734864 [TBL] [Abstract][Full Text] [Related]
8. No evidence for thick deposits of ice at the lunar south pole. Campbell DB; Campbell BA; Carter LM; Margot JL; Stacy NJ Nature; 2006 Oct; 443(7113):835-7. PubMed ID: 17051213 [TBL] [Abstract][Full Text] [Related]
9. Exogenic origin for the volatiles sampled by the Lunar CRater Observation and Sensing Satellite impact. Mandt KE; Mousis O; Hurley D; Bouquet A; Retherford KD; MagaƱa LO; Luspay-Kuti A Nat Commun; 2022 Feb; 13(1):642. PubMed ID: 35136041 [TBL] [Abstract][Full Text] [Related]
13. Sandmeier model based topographic correction to lunar spectral profiler (SP) data from KAGUYA satellite. Chen SB; Wang JR; Guo PJ; Wang MC Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2573-7. PubMed ID: 25532366 [TBL] [Abstract][Full Text] [Related]
15. Bistatic-radar detection of lunar scattering centers with lunar orbiter I. Tyler GL; Eshleman VR; Fjeldbo G; Howard HT; Peterson AM Science; 1967 Jul; 157(3785):193-5. PubMed ID: 17806264 [TBL] [Abstract][Full Text] [Related]
16. Missile inpacts as sources of seismic energy on the moon. Moore HJ; Latham GV; McDonald WG Science; 1970 Apr; 168(3928):242-4. PubMed ID: 17747098 [TBL] [Abstract][Full Text] [Related]
17. Apollo 12 lunar module impact: laboratory simulation and possible downrange ballistic effects. Swift HF; McGetchin TR; Preonas DD; Johnson SW Science; 1970 Aug; 169(3948):851-4. PubMed ID: 17750052 [TBL] [Abstract][Full Text] [Related]
18. Constraints on the volatile distribution within Shackleton crater at the lunar south pole. Zuber MT; Head JW; Smith DE; Neumann GA; Mazarico E; Torrence MH; Aharonson O; Tye AR; Fassett CI; Rosenburg MA; Melosh HJ Nature; 2012 Jun; 486(7403):378-81. PubMed ID: 22722197 [TBL] [Abstract][Full Text] [Related]
19. Mercury cratering record viewed from MESSENGER's first flyby. Strom RG; Chapman CR; Merline WJ; Solomon SC; Head JW Science; 2008 Jul; 321(5885):79-81. PubMed ID: 18599774 [TBL] [Abstract][Full Text] [Related]
20. Lunar ring dikes from orbiter I. O'keefe JA; Lowman PD; Cameron WS Science; 1967 Jan; 155(3758):77-9. PubMed ID: 17799150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]