These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17769802)

  • 1. High-performance photorefractive polymers.
    Liphardt M; Goonesekera A; Jones BE; Ducharme S; Takacs JM; Zhang L
    Science; 1994 Jan; 263(5145):367-9. PubMed ID: 17769802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A photorefractive organically modified silica glass with high optical gain.
    Cheben P; del Monte F; Worsfold DJ; Carlsson DJ; Grover CP; Mackenzie JD
    Nature; 2000 Nov; 408(6808):64-7. PubMed ID: 11081505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical gain by a simple photoisomerization process.
    Gallego-Gómez F; del Monte F; Meerholz K
    Nat Mater; 2008 Jun; 7(6):490-7. PubMed ID: 18454152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An updatable holographic three-dimensional display.
    Tay S; Blanche PA; Voorakaranam R; Tunç AV; Lin W; Rokutanda S; Gu T; Flores D; Wang P; Li G; St Hilaire P; Thomas J; Norwood RA; Yamamoto M; Peyghambarian N
    Nature; 2008 Feb; 451(7179):694-8. PubMed ID: 18256667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azocarbazole Polymethacrylates as Single-Component Electrooptic Materials.
    Barrett C; Choudhury B; Natansohn A; Rochon P
    Macromolecules; 1998 Jul; 31(15):4845-51. PubMed ID: 9680422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields.
    Liebig CM; Buller SH; Banerjee PP; Basun SA; Blanche PA; Thomas J; Christenson CW; Peyghambarian N; Evans DR
    Opt Express; 2013 Dec; 21(25):30392-400. PubMed ID: 24514617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photorefractivity in a polymeric composite photosensitized with NiS nanocrystals.
    Fears TM; Anderson C; Winiarz JG
    J Chem Phys; 2008 Oct; 129(15):154704. PubMed ID: 19045215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current capabilities and future needs for semiconductor ion implantation (invited).
    Renau A
    Rev Sci Instrum; 2010 Feb; 81(2):02B907. PubMed ID: 20192473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functionality and cost advantages of high-performance polymers.
    Young M
    Med Device Technol; 2003 Sep; 14(7):12-5. PubMed ID: 14528807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced photorefractive performance from 45 degrees -cut BaTiO(3).
    Ford JE; Fainman Y; Lee SH
    Appl Opt; 1989 Nov; 28(22):4808-15. PubMed ID: 20555954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grating dynamics in a photorefractive polymer with Alq(3) electron traps.
    Christenson CW; Thomas J; Blanche PA; Voorakaranam R; Norwood RA; Yamamoto M; Peyghambarian N
    Opt Express; 2010 Apr; 18(9):9358-65. PubMed ID: 20588782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid crystals for holographic optical data storage.
    Matharu AS; Jeeva S; Ramanujam PS
    Chem Soc Rev; 2007 Dec; 36(12):1868-80. PubMed ID: 17982514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and robust multiphoton data storage in molecular glasses and highly crosslinked polymers.
    Olson CE; Previte MJ; Fourkas JT
    Nat Mater; 2002 Dec; 1(4):225-8. PubMed ID: 12618782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NTP Toxicology and Carcinogenesis Studies of 1,3-Butadiene (CAS No. 106-99-0) in B6C3F1 Mice (Inhalation Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1984 Aug; 288():1-111. PubMed ID: 12748715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining.
    Mecomber JS; Stalcup AM; Hurd D; Halsall HB; Heineman WR; Seliskar CJ; Wehmeyer KR; Limbach PA
    Anal Chem; 2006 Feb; 78(3):936-41. PubMed ID: 16448071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of geometric distortion correction on motion realignment in fMRI.
    Elliott MA; Gualtieri EE; Hulvershorn J; Ragland JD; Gur R
    Acad Radiol; 2004 Sep; 11(9):1005-10. PubMed ID: 15350581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy efficiency of optical interconnections using photorefractive holograms.
    Chiou A; Yeh P
    Appl Opt; 1990 Mar; 29(8):1111-7. PubMed ID: 20562968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photorefractive performance of a CdSe/ZnS core/shell nanoparticle-sensitized polymer.
    Aslam F; Binks DJ; Rahn MD; West DP; O'Brien P; Pickett N; Daniels S
    J Chem Phys; 2005 May; 122(18):184713. PubMed ID: 15918753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing 180° domains in ferroelectric crystals by photorefractive beam coupling.
    Maccormack S; Feinberg J
    Appl Opt; 1996 Oct; 35(30):5961-3. PubMed ID: 21127609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking novelty filter at 780 nm based on a photorefractive polymer in a two-beam coupling geometry.
    Hendrickx E; Van Steenwinckel D; Persoons A
    Appl Opt; 2001 Mar; 40(9):1412-6. PubMed ID: 18357130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.