These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 17769827)

  • 1. Induction and Ecological Significance of Gigantism in the Rotifer Asplanchna sieboldi.
    Gilbert JJ
    Science; 1973 Jul; 181(4094):63-6. PubMed ID: 17769827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective cannibalism in the rotifer asplanchna sieboldi: contact recognition of morphotype and clone.
    Gilbert JJ
    Proc Natl Acad Sci U S A; 1976 Sep; 73(9):3233-7. PubMed ID: 1067616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary tocopherol and sexual reproduction in the rotifers Brachionus calyciflorus and Asplanchna sieboldi.
    Gilbert JJ; Litton JR
    J Exp Zool; 1975 Dec; 194(3):485-93. PubMed ID: 1202152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorphism and reproductive mode in the rotifer, Asplanchna sieboldi: relationship between meiotic oogenesis and shape of body-wall outgrowths.
    Kabay ME; Gilbert JJ
    J Exp Zool; 1977 Jul; 201(1):21-7. PubMed ID: 886294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gigantism and the potential for interference competition in the rotifer genus Asplanchna.
    Gilbert JJ; Confer JL
    Oecologia; 1986 Nov; 70(4):549-554. PubMed ID: 28311497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphism in the rotifer Asplanchna sieboldi. Fine structure of saccate, cruciform and campanulate females.
    Wurdak ES; Gilbert JJ
    Cell Tissue Res; 1976 Jul; 169(4):435-48. PubMed ID: 991194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex-specific cannibalism in the rotifer Asplanchna sieboldi.
    Gilbert JJ
    Science; 1976 Nov; 194(4266):730-2. PubMed ID: 982038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The adaptive significance of polymorphism in the rotifer Asplanchna. Humps in males and females.
    Gilbert JJ
    Oecologia; 1973 Jun; 13(2):135-146. PubMed ID: 28308714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes.
    Keogh JS; Scott IA; Hayes C
    Evolution; 2005 Jan; 59(1):226-33. PubMed ID: 15792242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body size, ration level, and population growth in Asplanchna.
    Stemberger RS; Gilbert JJ
    Oecologia; 1984 Nov; 64(3):355-359. PubMed ID: 28311450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific behavioural responses triggered by identified mechanosensory receptor cells in the apical field of the giant rotifer Asplanchna sieboldi.
    Joanidopoulos KD; Marwan W
    J Exp Biol; 1998 Jan; 201(Pt 2):169-77. PubMed ID: 9405299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rotifer jaw: a scanning and transmission electron microscope study. II. The trophi of Asplanchna sieboldi.
    Koehler JK; Hayes TL
    J Ultrastruct Res; 1969 Jun; 27(5):419-34. PubMed ID: 4240883
    [No Abstract]   [Full Text] [Related]  

  • 13. Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata.
    Bashey F
    Evolution; 2006 Feb; 60(2):348-61. PubMed ID: 16610325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin E as an extrinsic and intrinisc signal controlling development in the rotifer Asplanchna: uptake, transmission and localization of ( 3 H) -tocopherol.
    Birky CW; Gilbert JJ
    J Embryol Exp Morphol; 1972 Feb; 27(1):103-20. PubMed ID: 5021245
    [No Abstract]   [Full Text] [Related]  

  • 15. Nuclear number in the rotifer asplanchna: intraclonal variation and environmental control.
    Birky CW; Field B
    Science; 1966 Feb; 151(3710):585-7. PubMed ID: 17809500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of size structure in the prey for predator-prey dynamics: the composite functional response.
    Rudolf VH
    J Anim Ecol; 2008 May; 77(3):520-8. PubMed ID: 18284478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the main dietary antioxidants (carotenoids, gamma-tocopherol, polyphenols, and vitamin C) on alpha-tocopherol absorption.
    Reboul E; Thap S; Perrot E; Amiot MJ; Lairon D; Borel P
    Eur J Clin Nutr; 2007 Oct; 61(10):1167-73. PubMed ID: 17268411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-tocopherol supplementation favorable effects on blood pressure, blood viscosity and cardiac remodeling of spontaneously hypertensive rats.
    Costa VA; Vianna LM; Aguila MB; Mandarim-de-Lacerda CA
    J Nutr Biochem; 2005 Apr; 16(4):251-6. PubMed ID: 15808330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid evolution drives ecological dynamics in a predator-prey system.
    Yoshida T; Jones LE; Ellner SP; Fussmann GF; Hairston NG
    Nature; 2003 Jul; 424(6946):303-6. PubMed ID: 12867979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trait-mediated interactions: influence of prey size, density and experience.
    McCoy MW; Bolker BM
    J Anim Ecol; 2008 May; 77(3):478-86. PubMed ID: 18312336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.