These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 17770259)

  • 1. Flight interneurons in the locust and the origin of insect wings.
    Robertson RM; Pearson KG; Reichert H
    Science; 1982 Jul; 217(4555):177-9. PubMed ID: 17770259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interneurons in the flight system of the locust: distribution, connections, and resetting properties.
    Robertson RM; Pearson KG
    J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect.
    Büschges A
    J Neurobiol; 1995 Aug; 27(4):488-512. PubMed ID: 7561829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel motor pathways from thoracic interneurons of the ventral giant interneuron system of the cockroach, Periplaneta americana.
    Ritzmann RE; Pollack AJ
    J Neurobiol; 1990 Dec; 21(8):1219-35. PubMed ID: 2273401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Baratin, a nonamidated neurostimulating neuropeptide, isolated from cockroach brain: distribution and actions in the cockroach and locust nervous systems.
    Nässel DR; Persson MG; Muren JE
    J Comp Neurol; 2000 Jun; 422(2):267-86. PubMed ID: 10842231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of motor patterns for walking and flight in motoneurons supplying bifunctional muscles in the locust.
    Ramirez JM; Pearson KG
    J Neurobiol; 1988 Apr; 19(3):257-82. PubMed ID: 3373206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common synaptic drive to segmentally homologous interneurons in the locust.
    Boyan G
    J Comp Neurol; 1992 Jul; 321(4):544-54. PubMed ID: 1506484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abundant distribution of locustatachykinin-like peptide in the nervous system and intestine of the cockroach Leucophaea maderae.
    Muren JE; Lundquist CT; Nässel DR
    Philos Trans R Soc Lond B Biol Sci; 1995 Jun; 348(1326):423-44. PubMed ID: 7480113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Projection patterns of posterior dorsal unpaired median neurons of the locust subesophageal ganglion.
    Bräunig P; Burrows M
    J Comp Neurol; 2004 Oct; 478(2):164-75. PubMed ID: 15349977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reorganization of sensory regulation of locust flight after partial deafferentation.
    Büschges A; Ramirez JM; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):31-43. PubMed ID: 1564454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and function of serially homologous leg motor neurons in the locust. II. Physiology.
    Wilson JA
    J Neurobiol; 1979 Mar; 10(2):153-67. PubMed ID: 512655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of myomodulin-like immunoreactivity in the adult and developing ventral nervous system of the locust Schistocerca gregaria.
    Swales LS; Evans PD
    J Comp Neurol; 1994 May; 343(2):263-80. PubMed ID: 8027443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates to flight-related density-dependent phase characteristics in locusts.
    Fuchs E; Kutsch W; Ayali A
    J Neurobiol; 2003 Nov; 57(2):152-62. PubMed ID: 14556281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The locust wing hinge stretch receptors. I. Primary sensory neurones with enormous central arborizations.
    Altman JS; Tyrer NM
    J Comp Neurol; 1977 Apr; 172(3):409-30. PubMed ID: 838886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of octopamine-immunoreactive neurons in the central nervous system of the lobster.
    Schneider H; Trimmer BA; Rapus J; Eckert M; Valentine DE; Kravitz EA
    J Comp Neurol; 1993 Mar; 329(1):129-42. PubMed ID: 8454723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiration and the generation of rhythmic outputs in insects.
    Kammer AE
    Fed Proc; 1976 Jul; 35(9):1992-9. PubMed ID: 776701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are abdominal prolegs serially homologous with the thoracic legs in Panorpidae (Insecta: Mecoptera)? Embryological evidence.
    Yue C; Hua B
    J Morphol; 2010 Nov; 271(11):1366-73. PubMed ID: 20715099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of specific behaviors in a locust by local release into neuropil of the natural neuromodulator octopamine.
    Sombati S; Hoyle G
    J Neurobiol; 1984 Nov; 15(6):481-506. PubMed ID: 6097645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural basis of a simple behavior: abdominal positioning in crayfish.
    Larimer JL; Moore D
    Microsc Res Tech; 2003 Feb; 60(3):346-59. PubMed ID: 12539164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.