These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 1777117)

  • 21. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata.
    Feng B; Hu W; Ma BP; Wang YZ; Huang HZ; Wang SQ; Qian XH
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1329-38. PubMed ID: 17823796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Immobilization of glucoamylase from Aspergillus awamori 466, and properties of the preparation].
    Ruadze ID; Zherebtsov NA; Slepokurova IuI; Selemenev VF; Shkutina IV; Stoianova OF
    Prikl Biokhim Mikrobiol; 2001; 37(2):202-8. PubMed ID: 11357426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space.
    Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B
    Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrolysis of lactose by free and immobilized beta-galactosidase from Thermus sp. strain T2.
    Ladero M; Perez MT; Santos A; Garcia-Ochoa F
    Biotechnol Bioeng; 2003 Jan; 81(2):241-52. PubMed ID: 12451560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immobilization of Aspergillus niger xylanase on chitosan using dialdehyde starch as a coupling agent.
    Chen H; Liu L; Lv S; Liu X; Wang M; Song A; Jia X
    Appl Biochem Biotechnol; 2010 Sep; 162(1):24-32. PubMed ID: 19823778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts.
    Fierobe HP; Mirgorodskaya E; Frandsen TP; Roepstorff P; Svensson B
    Protein Expr Purif; 1997 Mar; 9(2):159-70. PubMed ID: 9056481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of a diffusion model for mono- and bicomponent anion-exchange of two isoenzymes of glucoamylase from Aspergillus niger in a fixed bed.
    Soriano R; Bautista LF; Martínez M; Aracil J
    Biotechnol Prog; 2003; 19(4):1283-91. PubMed ID: 12892492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the carbohydrate moiety on the stability of glycoproteins.
    Wang C; Eufemi M; Turano C; Giartosio A
    Biochemistry; 1996 Jun; 35(23):7299-307. PubMed ID: 8652506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes.
    Esawy MA; Gamal AA; Kamel Z; Ismail AM; Abdel-Fattah AF
    Carbohydr Polym; 2013 Feb; 92(2):1463-9. PubMed ID: 23399177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate binding mechanism of Glu180-->Gln, Asp176-->Asn, and wild-type glucoamylases from Aspergillus niger.
    Christensen U; Olsen K; Stoffer BB; Svensson B
    Biochemistry; 1996 Nov; 35(47):15009-18. PubMed ID: 8942667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilization of oxalate decarboxylase to Eupergit and properties of the immobilized enzyme.
    Lin R; Wu R; Huang X; Xie T
    Prep Biochem Biotechnol; 2011; 41(2):154-65. PubMed ID: 21442551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a neutral and thermostable glucoamylase from the thermophilic mold Thermomucor indicae-seudaticae: activity, stability, and structural correlation.
    Kumar P; Islam A; Ahmad F; Satyanarayana T
    Appl Biochem Biotechnol; 2010 Mar; 160(3):879-90. PubMed ID: 19484200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides.
    Sierks MR; Svensson B
    Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Immobilized glucoamylase: A biocatalyst of dextrin hydrolysis].
    Kovalenko GA; Perminova LV; Plaksin GV; Chuenko TV; Komova OV; Rudina NA
    Prikl Biokhim Mikrobiol; 2006; 42(2):163-8. PubMed ID: 16761568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrolysis of soluble starch using Bacillus licheniformis alpha-amylase immobilized on superporous CELBEADS.
    Shewale SD; Pandit AB
    Carbohydr Res; 2007 Jun; 342(8):997-1008. PubMed ID: 17368436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetically recyclable, antimicrobial, and catalytically enhanced polymer-assisted "green" nanosystem-immobilized Aspergillus niger amyloglucosidase.
    Konwarh R; Kalita D; Mahanta C; Mandal M; Karak N
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):1983-92. PubMed ID: 20490787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose.
    Giardina T; Gunning AP; Juge N; Faulds CB; Furniss CS; Svensson B; Morris VJ; Williamson G
    J Mol Biol; 2001 Nov; 313(5):1149-59. PubMed ID: 11700070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and kinetics of a raw starch-hydrolyzing, thermostable, and neutral glucoamylase of the thermophilic mold Thermomucor indicae-seudaticae.
    Kumar S; Satyanarayana T
    Biotechnol Prog; 2003; 19(3):936-44. PubMed ID: 12790660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Erythrina caffra trypsin inhibitor retains its native structure and function after reducing its disulfide bonds.
    Lehle K; Wrba A; Jaenicke R
    J Mol Biol; 1994 Jun; 239(2):276-84. PubMed ID: 8196058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.