These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 17772749)

  • 1. Formation of the rocky mountains, Western United States: a continuum computer model.
    Bird P
    Science; 1988 Mar; 239(4847):1501-7. PubMed ID: 17772749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of ridges in the formation and longevity of flat slabs.
    Antonijevic SK; Wagner LS; Kumar A; Beck SL; Long MD; Zandt G; Tavera H; Condori C
    Nature; 2015 Aug; 524(7564):212-5. PubMed ID: 26268192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab.
    Bunge HP; Grand SP
    Nature; 2000 May; 405(6784):337-40. PubMed ID: 10830960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea.
    Abers GA; Ferris A; Craig M; Davies H; Lerner-Lam AL; Mutter JC; Taylor B
    Nature; 2002 Aug; 418(6900):862-5. PubMed ID: 12192406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geology of the Crust and Mantle, Western United States: Geophysical data reveal a thin crust and anomalous upper mantle characteristic of active regions.
    Thompson GA; Talwani M
    Science; 1964 Dec; 146(3651):1539-49. PubMed ID: 17775979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous.
    Liu L; Spasojevic S; Gurnis M
    Science; 2008 Nov; 322(5903):934-8. PubMed ID: 18988850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.
    Schellart WP; Stegman DR; Farrington RJ; Freeman J; Moresi L
    Science; 2010 Jul; 329(5989):316-9. PubMed ID: 20647465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithospheric structure of the Rio Grande rift.
    Wilson D; Aster R; West M; Ni J; Grand S; Gao W; Baldridge WS; Semken S; Patel P
    Nature; 2005 Feb; 433(7028):851-5. PubMed ID: 15729338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanism to thin the continental lithosphere at magma-poor margins.
    Lavier LL; Manatschal G
    Nature; 2006 Mar; 440(7082):324-8. PubMed ID: 16541070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oblique stepwise rise and growth of the Tibet plateau.
    Tapponnier P; Zhiqin X; Roger F; Meyer B; Arnaud N; Wittlinger G; Jingsui Y
    Science; 2001 Nov; 294(5547):1671-7. PubMed ID: 11721044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plate-wide stress relaxation explains European Palaeocene basin inversions.
    Nielsen SB; Thomsen E; Hansen DL; Clausen OR
    Nature; 2005 May; 435(7039):195-8. PubMed ID: 15889089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magmatic surge requires two-stage model for the Laramide orogeny.
    Schwartz JJ; Lackey JS; Miranda EA; Klepeis KA; Mora-Klepeis G; Robles F; Bixler JD
    Nat Commun; 2023 Jun; 14(1):3841. PubMed ID: 37386004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.
    Calvert AJ
    Nature; 2004 Mar; 428(6979):163-7. PubMed ID: 15014496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamorphic core complex formation by density inversion and lower-crust extrusion.
    Martinez F; Goodliffe AM; Taylor B
    Nature; 2001 Jun; 411(6840):930-4. PubMed ID: 11418853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block.
    Zuo X; Chan LS; Gao JF
    PLoS One; 2017; 12(2):e0171536. PubMed ID: 28182640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seismic detection of folded, subducted lithosphere at the core-mantle boundary.
    Hutko AR; Lay T; Garnero EJ; Revenaugh J
    Nature; 2006 May; 441(7091):333-6. PubMed ID: 16710418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of lower-mantle slab penetration phases in plate motions.
    Goes S; Capitanio FA; Morra G
    Nature; 2008 Feb; 451(7181):981-4. PubMed ID: 18288192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subduction and collision processes in the Central Andes constrained by converted seismic phases.
    Yuan X; Sobolev SV; Kind R; Oncken O; Bock G; Asch G; Schurr B; Graeber F; Rudloff A; Hanka W; Wylegalla K; Tibi R; Haberland C; Rietbrock A; Giese P; Wigger P; Röwer P; Zandt G; Beck S; Wallace T; Pardo M; Comte D
    Nature; 2000 Dec 21-28; 408(6815):958-61. PubMed ID: 11140679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot Cordilleran hinterland promoted lower crust mobility and decoupling of Laramide deformation.
    Vlaha DR; Zuza AV; Chen L; Harlaux M
    Nat Commun; 2024 May; 15(1):3750. PubMed ID: 38704380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular evidence for Pleistocene glacial cycles driving diversification of a North American desert spider, Agelenopsis aperta.
    Ayoub NA; Riechert SE
    Mol Ecol; 2004 Nov; 13(11):3453-65. PubMed ID: 15488003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.