BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 17773336)

  • 1. Membrane lipid from deep-sea hydrothermal vent methanogen: a new macrocyclic glycerol diether.
    Comita PB; Gagosian RB
    Science; 1983 Dec; 222(4630):1329-31. PubMed ID: 17773336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii.
    Comita PB; Gagosian RB; Pang H; Costello CE
    J Biol Chem; 1984 Dec; 259(24):15234-41. PubMed ID: 6549008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crust from a mud volcano in the Sorokin Trough, NE Black Sea.
    Stadnitskaia A; Baas M; Ivanov MK; van Weering TC; Sinninghe Damsté JS
    Archaea; 2003 Oct; 1(3):165-73. PubMed ID: 15803662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures.
    Sprott GD; Meloche M; Richards JC
    J Bacteriol; 1991 Jun; 173(12):3907-10. PubMed ID: 2050642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen.
    Tsao JH; Kaneshiro SM; Yu SS; Clark DS
    Biotechnol Bioeng; 1994 Feb; 43(3):258-61. PubMed ID: 18615657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?
    Thornburg CC; Zabriskie TM; McPhail KL
    J Nat Prod; 2010 Mar; 73(3):489-99. PubMed ID: 20099811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of archaebacterial membrane lipids.
    Sprott GD
    J Bioenerg Biomembr; 1992 Dec; 24(6):555-66. PubMed ID: 1459987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-pressure-temperature bioreactor for studying pressure-temperature relationships in bacterial growth and productivity.
    Miller JF; Almond EL; Shah NN; Ludlow JM; Zollweg JA; Streett WB; Zinder SH; Clark DS
    Biotechnol Bioeng; 1988 Apr; 31(5):407-13. PubMed ID: 18584624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents.
    Elsaied H; Stokes HW; Nakamura T; Kitamura K; Fuse H; Maruyama A
    Environ Microbiol; 2007 Sep; 9(9):2298-312. PubMed ID: 17686026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of polar lipids from the thermophilic, deep-sea archaeobacterium Methanococcus jannaschii.
    Ferrante G; Richards JC; Sprott GD
    Biochem Cell Biol; 1990 Jan; 68(1):274-83. PubMed ID: 2372322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii.
    Park CB; Clark DS
    Appl Environ Microbiol; 2002 Mar; 68(3):1458-63. PubMed ID: 11872502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance.
    Nakagawa S; Takai K
    FEMS Microbiol Ecol; 2008 Jul; 65(1):1-14. PubMed ID: 18503548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field.
    Johnson KS; Beehler CL; Sakamoto-Arnold CM; Childress JJ
    Science; 1986 Mar; 231(4742):1139-41. PubMed ID: 17818544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and quantitation of a tertiary mixture of salts by Raman spectroscopy in simulated hydrothermal vent fluid.
    Dable BK; Love BA; Battaglia TM; Booksh KS; Lilley MD; Marquardt BJ
    Appl Spectrosc; 2006 Jul; 60(7):773-80. PubMed ID: 16854265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents.
    Burgaud G; Le Calvez T; Arzur D; Vandenkoornhuyse P; Barbier G
    Environ Microbiol; 2009 Jun; 11(6):1588-600. PubMed ID: 19239486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal anatomy of Chorocaris chacei, a deep-sea hydrothermal vent shrimp from the Mid-Atlantic Ridge.
    Lakin RC; Jinks RN; Battelle BA; Herzog ED; Kass L; Renninger GH; Chamberlain SC
    J Comp Neurol; 1997 Sep; 385(4):503-14. PubMed ID: 9302103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge.
    Chausson F; Sanglier S; Leize E; Hagège A; Bridges CR; Sarradin PM; Shillito B; Lallier FH; Zal F
    Micron; 2004; 35(1-2):31-41. PubMed ID: 15036285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHH family peptides from an 'eyeless' deep-sea hydrothermal vent shrimp, Rimicaris kairei: characterization and sequence analysis.
    Qian YQ; Dai L; Yang JS; Yang F; Chen DF; Fujiwara Y; Tsuchida S; Nagasawa H; Yang WJ
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Sep; 154(1):37-47. PubMed ID: 19422930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage.
    McCliment EA; Voglesonger KM; O'Day PA; Dunn EE; Holloway JR; Cary SC
    Environ Microbiol; 2006 Jan; 8(1):114-25. PubMed ID: 16343327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field.
    Nakagawa S; Takai K; Inagaki F; Hirayama H; Nunoura T; Horikoshi K; Sako Y
    Environ Microbiol; 2005 Oct; 7(10):1619-32. PubMed ID: 16156735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.