BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 17773336)

  • 21. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents.
    Reysenbach AL; Liu Y; Banta AB; Beveridge TJ; Kirshtein JD; Schouten S; Tivey MK; Von Damm KL; Voytek MA
    Nature; 2006 Jul; 442(7101):444-7. PubMed ID: 16871216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp.
    Phleger CF; Nelson MM; Groce AK; Cary SC; Coyne KJ; Nichols PD
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jun; 141(2):196-210. PubMed ID: 15893489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures.
    Nakagawa T; Nakagawa S; Inagaki F; Takai K; Horikoshi K
    FEMS Microbiol Lett; 2004 Mar; 232(2):145-52. PubMed ID: 15033233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber.
    Higashi Y; Sunamura M; Kitamura K; Nakamura K; Kurusu Y; Ishibashi J; Urabe T; Maruyama A
    FEMS Microbiol Ecol; 2004 Mar; 47(3):327-36. PubMed ID: 19712321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Miocene radiation of deep-sea hydrothermal vent shrimp (Caridea: Bresiliidae): evidence from mitochondrial cytochrome oxidase subunit I.
    Shank TM; Black MB; Halanych KM; Lutz RA; Vrijenhoek RC
    Mol Phylogenet Evol; 1999 Nov; 13(2):244-54. PubMed ID: 10603254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp.
    Simon-Colin C; Raguénès G; Cozien J; Guezennec JG
    J Appl Microbiol; 2008 May; 104(5):1425-32. PubMed ID: 18179545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical speciation drives hydrothermal vent ecology.
    Luther GW; Rozan TF; Taillefert M; Nuzzio DB; Di Meo C; Shank TM; Lutz RA; Cary SC
    Nature; 2001 Apr; 410(6830):813-6. PubMed ID: 11298448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes of gill and hemocyte-related bio-indicators during long term maintenance of the vent mussel Bathymodiolus azoricus held in aquaria at atmospheric pressure.
    Bettencourt R; Dando P; Rosa D; Riou V; Colaço A; Sarrazin J; Sarradin PM; Santos RS
    Comp Biochem Physiol A Mol Integr Physiol; 2008 May; 150(1):1-7. PubMed ID: 18387836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Occurrence and recent long-distance dispersal of deep-sea hydrothermal vent shrimps.
    Tokuda G; Yamada A; Nakano K; Arita N; Yamasaki H
    Biol Lett; 2006 Jun; 2(2):257-60. PubMed ID: 17148377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detoxification mechanisms in shrimp: comparative approach between hydrothermal vent fields and estuarine environments.
    Gonzalez-Rey M; Serafim A; Company R; Gomes T; Bebianno MJ
    Mar Environ Res; 2008 Jul; 66(1):35-7. PubMed ID: 18405963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Larval development and dispersal at deep-sea hydrothermal vents.
    Lutz RA; Jablonski D; Turner RD
    Science; 1984 Dec; 226(4681):1451-4. PubMed ID: 17789002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Total Synthesis of Archaeal 36-Membered Macrocyclic Diether Lipid.
    Eguchi T; Arakawa K; Terachi T; Kakinuma K
    J Org Chem; 1997 Apr; 62(7):1924-1933. PubMed ID: 11671492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highlighting the Unique Roles of Radical
    Boswinkle K; McKinney J; Allen KD
    J Bacteriol; 2022 Aug; 204(8):e0019722. PubMed ID: 35880875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intensified microbial sulfate reduction in the deep Dead Sea during the early Holocene Mediterranean sapropel 1 deposition.
    Levy EJ; Thomas C; Antler G; Gavrieli I; Turchyn AV; Grossi V; Ariztegui D; Sivan O
    Geobiology; 2022 Jul; 20(4):518-532. PubMed ID: 35384246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids.
    Zeng Z; Chen H; Yang H; Chen Y; Yang W; Feng X; Pei H; Welander PV
    Nat Commun; 2022 Mar; 13(1):1545. PubMed ID: 35318330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methanogens: pushing the boundaries of biology.
    Buan NR
    Emerg Top Life Sci; 2018 Dec; 2(4):629-646. PubMed ID: 33525834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The major lipid cores of the archaeon Ignisphaera aggregans: implications for the phylogeny and biosynthesis of glycerol monoalkyl glycerol tetraether isoprenoid lipids.
    Knappy CS; Nunn CE; Morgan HW; Keely BJ
    Extremophiles; 2011 Jul; 15(4):517-28. PubMed ID: 21630026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pressure and Temperature Effects on Growth and Methane Production of the Extreme Thermophile Methanococcus jannaschii.
    Miller JF; Shah NN; Nelson CM; Ludlow JM; Clark DS
    Appl Environ Microbiol; 1988 Dec; 54(12):3039-42. PubMed ID: 16347794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii.
    Kaneshiro SM; Clark DS
    J Bacteriol; 1995 Jul; 177(13):3668-72. PubMed ID: 7601829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial triterpenoids.
    Taylor RF
    Microbiol Rev; 1984 Sep; 48(3):181-98. PubMed ID: 6387426
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.