These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 1777564)
1. Direct determination of crystallographic phases for diffraction data from lipid bilayers. II. Refinement of phospholipid structures. Dorset DL Biophys J; 1991 Dec; 60(6):1366-73. PubMed ID: 1777564 [TBL] [Abstract][Full Text] [Related]
2. Direct determination of crystallographic phases for diffraction data from lipid bilayers. I. Reliability and phase refinement. Dorset DL Biophys J; 1991 Dec; 60(6):1356-65. PubMed ID: 1777563 [TBL] [Abstract][Full Text] [Related]
3. Direct determination of crystallographic phases for diffraction data from phospholipid multilamellar arrays. Dorset DL Biophys J; 1990 Nov; 58(5):1077-87. PubMed ID: 2291934 [TBL] [Abstract][Full Text] [Related]
4. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
5. High-resolution electron density profiles reveal influence of fatty acids on bilayer structure. Katsaras J; Stinson RH Biophys J; 1990 Mar; 57(3):649-55. PubMed ID: 2306509 [TBL] [Abstract][Full Text] [Related]
6. Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. II. "Composition-space" refinement method. Wiener MC; White SH Biophys J; 1991 Jan; 59(1):174-85. PubMed ID: 2015382 [TBL] [Abstract][Full Text] [Related]
7. Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases. Jordanova A; Lalchev Z; Tenchov B Eur Biophys J; 2003 Feb; 31(8):626-32. PubMed ID: 12582822 [TBL] [Abstract][Full Text] [Related]
8. Effects of non-ionic surfactants N-alkyl-N,N-dimethylamine-N-oxides on the structure of a phospholipid bilayer: small-angle X-ray diffraction study. Karlovská J; Lohner K; Degovics G; Lacko I; Devínsky F; Balgavý P Chem Phys Lipids; 2004 Apr; 129(1):31-41. PubMed ID: 14998725 [TBL] [Abstract][Full Text] [Related]
9. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Wiener MC; White SH Biophys J; 1992 Feb; 61(2):434-47. PubMed ID: 1547331 [TBL] [Abstract][Full Text] [Related]
10. Direct determination of phospholipid lamellar structure at 0.34-nm resolution. Dorset DL; Beckmann E; Zemlin F Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7570-3. PubMed ID: 2217186 [TBL] [Abstract][Full Text] [Related]
11. Interpretation of small angle X-ray measurements guided by molecular dynamics simulations of lipid bilayers. Sachs JN; Petrache HI; Woolf TB Chem Phys Lipids; 2003 Dec; 126(2):211-23. PubMed ID: 14623455 [TBL] [Abstract][Full Text] [Related]
12. Phospholipid component volumes: determination and application to bilayer structure calculations. Armen RS; Uitto OD; Feller SE Biophys J; 1998 Aug; 75(2):734-44. PubMed ID: 9675175 [TBL] [Abstract][Full Text] [Related]
13. Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution. Wiener MC; White SH Biophys J; 1991 Jan; 59(1):162-73. PubMed ID: 2015381 [TBL] [Abstract][Full Text] [Related]
14. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures. Vierl U; Löbbecke L; Nagel N; Cevc G Biophys J; 1994 Sep; 67(3):1067-79. PubMed ID: 7811917 [TBL] [Abstract][Full Text] [Related]
15. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein. Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207 [TBL] [Abstract][Full Text] [Related]
16. Structure of two-component lipid membranes on solid support: an x-ray reflectivity study. Nováková E; Giewekemeyer K; Salditt T Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051911. PubMed ID: 17279943 [TBL] [Abstract][Full Text] [Related]
17. Structure of phospholipid-cholesterol membranes: an x-ray diffraction study. Karmakar S; Raghunathan VA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061924. PubMed ID: 16089782 [TBL] [Abstract][Full Text] [Related]
18. Understanding thermal phases in atomic detail by all-atom molecular-dynamics simulation of a phospholipid bilayer. Ogata K; Uchida W; Nakamura S J Phys Chem B; 2014 Dec; 118(49):14353-65. PubMed ID: 25383505 [TBL] [Abstract][Full Text] [Related]
19. X-ray studies on phospholipid bilayers. XIV. Interactions with the antiarrhythmic asocainol. Suwalsky M; Sánchez I; Neira F Z Naturforsch C J Biosci; 1993; 48(11-12):930-8. PubMed ID: 8297425 [TBL] [Abstract][Full Text] [Related]
20. Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study. Wu G; Majewski J; Ege C; Kjaer K; Weygand MJ; Lee KY Biophys J; 2005 Nov; 89(5):3159-73. PubMed ID: 16100276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]