BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17777850)

  • 1. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria.
    Stetter KO; Lauerer G; Thomm M; Neuner A
    Science; 1987 May; 236(4803):822-4. PubMed ID: 17777850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Thermophilic microbial communities of deep-sea hydrothermal environments].
    Miroshnichenko ML
    Mikrobiologiia; 2004; 73(1):5-18. PubMed ID: 15074034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments.
    Nercessian O; Bienvenu N; Moreira D; Prieur D; Jeanthon C
    Environ Microbiol; 2005 Jan; 7(1):118-32. PubMed ID: 15643942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermosulfidibacter takaii gen. nov., sp. nov., a thermophilic, hydrogen-oxidizing, sulfur-reducing chemolithoautotroph isolated from a deep-sea hydrothermal field in the Southern Okinawa Trough.
    Nunoura T; Oida H; Miyazaki M; Suzuki Y
    Int J Syst Evol Microbiol; 2008 Mar; 58(Pt 3):659-65. PubMed ID: 18319474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Archaebacterium Thermococcus celer Represents, a Novel Genus within the Thermophilic Branch of the Archaebacteria.
    Zillig W; Holz I; Janekovic D; Schäfer W; Reiter WD
    Syst Appl Microbiol; 1983; 4(1):88-94. PubMed ID: 23196302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial Sulfate Reduction Above 100{degrees}C in Deep-Sea Hydrothermal Vent Sediments.
    Jørgensen BB; Isaksen MF; Jannasch HW
    Science; 1992 Dec; 258(5089):1756-7. PubMed ID: 17831655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-dependent RNA polymerase of thermoacidophilic archaebacteria.
    Prangishvilli D; Zillig W; Gierl A; Biesert L; Holz I
    Eur J Biochem; 1982 Mar; 122(3):471-7. PubMed ID: 6800790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of thermophilic marine sulfate reducers in north sea oil field waters and oil reservoirs.
    Nilsen RK; Beeder J; Thorstenson T; Torsvik T
    Appl Environ Microbiol; 1996 May; 62(5):1793-8. PubMed ID: 16535321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geomicrobiology of deep-sea hydrothermal vents.
    Jannasch HW; Mottl MJ
    Science; 1985 Aug; 229(4715):717-25. PubMed ID: 17841485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid.
    Dipippo JL; Nesbø CL; Dahle H; Doolittle WF; Birkland NK; Noll KM
    Int J Syst Evol Microbiol; 2009 Dec; 59(Pt 12):2991-3000. PubMed ID: 19643902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogenivirga okinawensis sp. nov., a thermophilic sulfur-oxidizing chemolithoautotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough.
    Nunoura T; Miyazaki M; Suzuki Y; Takai K; Horikoshi K
    Int J Syst Evol Microbiol; 2008 Mar; 58(Pt 3):676-81. PubMed ID: 18319477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures.
    Nakagawa T; Nakagawa S; Inagaki F; Takai K; Horikoshi K
    FEMS Microbiol Lett; 2004 Mar; 232(2):145-52. PubMed ID: 15033233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes.
    Sokolova TG; Henstra AM; Sipma J; Parshina SN; Stams AJ; Lebedinsky AV
    FEMS Microbiol Ecol; 2009 May; 68(2):131-41. PubMed ID: 19573196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extremely thermophilic fermentative archaebacteria of the genus desulfurococcus from deep-sea hydrothermal vents.
    Jannasch HW; Wirsen CO; Molyneaux SJ; Langworthy TA
    Appl Environ Microbiol; 1988 May; 54(5):1203-9. PubMed ID: 16347631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents.
    González JM; Kato C; Horikoshi K
    Arch Microbiol; 1995 Sep; 164(3):159-64. PubMed ID: 7545383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Phylogenetic analysis of thermophilic sulfate-reducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing.
    Leu JY; McGovern-Traa CP; Porter AJ; Harris WJ; Hamilton WA
    Anaerobe; 1998 Jun; 4(3):165-74. PubMed ID: 16887637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids.
    Takii S; Hanada S; Hase Y; Tamaki H; Uyeno Y; Sekiguchi Y; Matsuura K
    Int J Syst Evol Microbiol; 2008 Oct; 58(Pt 10):2433-8. PubMed ID: 18842870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Desulfacinum subterraneum sp.nov.--a new thermophilic sulfate-reducing bacterium isolated from a high temperature oil field ].
    Rozanova EP; Turova TP; Kolganova TV; Lysenko AM; Mitiushina LL; Iusupov SK; Beliaev SS
    Mikrobiologiia; 2001; 70(4):536-42. PubMed ID: 11558281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A possible biochemical missing link among archaebacteria.
    Achenbach-Richter L; Stetter KO; Woese CR
    Nature; 1987 May; 327(6120):348-9. PubMed ID: 11540893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments.
    Finke N; Hoehler TM; Jørgensen BB
    Environ Microbiol; 2007 Apr; 9(4):1060-71. PubMed ID: 17359276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.