These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 17778715)

  • 1. Pyroelectricity and Induced Pyroelectric Polarization in Leaves of the Palmlike Plant Encephalartos villosus.
    Lang SB; Athenstaedt H
    Science; 1977 May; 196(4293):985-6. PubMed ID: 17778715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the pyroelectric coefficient and permittivity on Rhododendron and Encephalartos leaves and on the insect Periplaneta americana.
    Simhony M; Athenstaedt H
    Biophys J; 1980 Feb; 29(2):331-7. PubMed ID: 7260256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Strip Cell in Pyroelectric Devices.
    Siao AS; Chao CK; Hsiao CC
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films.
    Pandya S; Wilbur J; Kim J; Gao R; Dasgupta A; Dames C; Martin LW
    Nat Mater; 2018 May; 17(5):432-438. PubMed ID: 29662157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyroelectricity of water ice.
    Wang H; Bell RC; Iedema MJ; Schenter GK; Wu K; Cowin JP
    J Phys Chem B; 2008 May; 112(20):6379-89. PubMed ID: 18426236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent integrated pyroelectric-photovoltaic structure for photo-thermo hybrid power generation.
    Patel M; Park HH; Bhatnagar P; Kumar N; Lee J; Kim J
    Nat Commun; 2024 Apr; 15(1):3466. PubMed ID: 38658539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azoxyglycoside content and beta-glycosidase activities in leaves of various cycads.
    Yagi F
    Phytochemistry; 2004 Dec; 65(24):3243-7. PubMed ID: 15561189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Pyroelectricity in Cubic SrTiO
    Meirzadeh E; Christensen DV; Makagon E; Cohen H; Rosenhek-Goldian I; Morales EH; Bhowmik A; Lastra JMG; Rappe AM; Ehre D; Lahav M; Pryds N; Lubomirsky I
    Adv Mater; 2019 Nov; 31(44):e1904733. PubMed ID: 31532884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant pyroelectricity in nanomembranes.
    Jiang J; Zhang L; Ming C; Zhou H; Bose P; Guo Y; Hu Y; Wang B; Chen Z; Jia R; Pendse S; Xiang Y; Xia Y; Lu Z; Wen X; Cai Y; Sun C; Wang GC; Lu TM; Gall D; Sun YY; Koratkar N; Fohtung E; Shi Y; Shi J
    Nature; 2022 Jul; 607(7919):480-485. PubMed ID: 35859196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyroelectric energy conversion: optimization principles.
    Sebald G; Lefeuvre E; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):538-51. PubMed ID: 18407845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing soft pyroelectric and electrocaloric materials using electrets.
    Darbaniyan F; Dayal K; Liu L; Sharma P
    Soft Matter; 2019 Jan; 15(2):262-277. PubMed ID: 30543261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature field analysis for PZT pyroelectric cells for thermal energy harvesting.
    Hsiao CC; Ciou JC; Siao AS; Lee CY
    Sensors (Basel); 2011; 11(11):10458-73. PubMed ID: 22346652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of pyroelectric cells for thermal energy harvesting.
    Hsiao CC; Siao AS; Ciou JC
    Sensors (Basel); 2012; 12(1):534-48. PubMed ID: 22368484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy harvesting based on FE-FE transition in ferroelectric single crystals.
    Guyomar D; Pruvost S; Sebald G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):279-85. PubMed ID: 18334334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear pyroelectric energy harvesting from relaxor single crystals.
    Khodayari A; Pruvost S; Sebald G; Guyomar D; Mohammadi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):693-9. PubMed ID: 19406698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyroelectric properties of an antiferroelectric liquid crystal.
    O'Sullivan JW; Panarin YP; Vij JK; Seed AJ; Hird M; Goodby JW
    J Phys Condens Matter; 1996 Sep; 8(38):L551-6. PubMed ID: 22146515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating electron redistribution to achieve electronic pyroelectricity in molecular [FeCo] crystals.
    Sadhukhan P; Wu SQ; Long JI; Nakanishi T; Kanegawa S; Gao K; Yamamoto K; Okajima H; Sakamoto A; Baker ML; Kroll T; Sokaras D; Okazawa A; Kojima N; Shiota Y; Yoshizawa K; Sato O
    Nat Commun; 2021 Aug; 12(1):4836. PubMed ID: 34376674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields.
    Hur N; Park S; Sharma PA; Ahn JS; Guha S; Cheong SW
    Nature; 2004 May; 429(6990):392-5. PubMed ID: 15164057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of Pyroelectricity in Three- and Two-Dimensional Materials.
    Liu J; Pantelides ST
    Phys Rev Lett; 2018 May; 120(20):207602. PubMed ID: 29864359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Generated Entropy Monitored by Pyroelectric Sensors.
    Hsiao CC; Liang BH
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30282945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.