BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1777909)

  • 1. In vivo mechanisms of myocardial functional stability during physiological interventions.
    Osbakken M; Blum H; Wang DJ; Doliba N; Ivanics T; Zhang D; Mayevsky A
    Cardiology; 1991; 79(1):1-13. PubMed ID: 1777909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo myocardial bioenergetics during acute volume and/or pressure loading in a canine model: a 31P NMR study.
    Osbakken M; Ligeti L; Huddell J; Duska C; Ponomarenko I; Chance B
    Cardiology; 1989; 76(6):405-17. PubMed ID: 2611795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo correlation of myocardial metabolism, perfusion, and mechanical function during increased cardiac work.
    Osbakken M; Mitchell MD; Zhang D; Mayevsky A; Chance B
    Cardiovasc Res; 1991 Sep; 25(9):749-56. PubMed ID: 1799908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatinine kinase kinetics studied by phosphorus-31 nuclear magnetic resonance in a canine model of chronic hypertension-induced cardiac hypertrophy.
    Osbakken M; Douglas PS; Ivanics T; Zhang DN; Van Winkle T
    J Am Coll Cardiol; 1992 Jan; 19(1):223-8. PubMed ID: 1530854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.
    Schaefer S; Carr LJ; Kreutzer U; Jue T
    Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo.
    Portman MA; Standaert TA; Ning XH
    J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic regulation of in vivo myocardial contractile function: multiparameter analysis.
    Osbakken MD
    Mol Cell Biochem; 1994; 133-134():13-37. PubMed ID: 7808451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute volume loading studied in cat myocardium with 31P nuclear magnetic resonance.
    Osbakken M; Young M; Huddell J; Closter J; Prammer M; Chance B
    Magn Reson Med; 1988 Jun; 7(2):143-55. PubMed ID: 3398762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative phosphorylation system during steady-state hypoxia in the dog brain.
    Nioka S; Smith DS; Chance B; Subramanian HV; Butler S; Katzenberg M
    J Appl Physiol (1985); 1990 Jun; 68(6):2527-35. PubMed ID: 2384431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus-31 nuclear magnetic resonance analysis of transient changes of canine myocardial metabolism in vivo.
    Heineman FW; Balaban RS
    J Clin Invest; 1990 Mar; 85(3):843-52. PubMed ID: 2312728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation among regional O2 consumption, high-energy phosphates, and substrate uptake in porcine right ventricle.
    Schwartz GG; Greyson CR; Wisneski JA; Garcia J; Steinman S
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H521-30. PubMed ID: 8141353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer.
    Corbett RJ; Laptook AR
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat.
    Bittl JA; Balschi JA; Ingwall JS
    Circ Res; 1987 Jun; 60(6):871-8. PubMed ID: 2954720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial bioenergetics during acute hibernation.
    Zhang J; Ishibashi Y; Zhang Y; Eijgelshoven MH; Duncker DJ; Merkle H; Bache RJ; Ugurbil K; From AH
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1452-63. PubMed ID: 9321837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function and bioenergetics in isolated perfused trained rat hearts.
    Spencer RG; Buttrick PM; Ingwall JS
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H409-17. PubMed ID: 9038963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 31P magnetic resonance spectroscopy of the Sherpa heart: a phosphocreatine/adenosine triphosphate signature of metabolic defense against hypobaric hypoxia.
    Hochachka PW; Clark CM; Holden JE; Stanley C; Ugurbil K; Menon RS
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1215-20. PubMed ID: 8577743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.