These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 17779640)

  • 1. Flight of Winter Moths Near 0{degrees}C.
    Heinrich B; Mommsen TP
    Science; 1985 Apr; 228(4696):177-9. PubMed ID: 17779640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex pheromone of the winter moth, a geometrid with unusually low temperature precopulatory responses.
    Roelofs WL; Hill AS; Linn CE; Meinwald J; Jain SC; Herbert HJ; Smith RF
    Science; 1982 Aug; 217(4560):657-9. PubMed ID: 17817538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thoracic Temperature Stabilization byn Blood Circulation in a Free-Flying Moth.
    Heinrich B
    Science; 1970 May; 168(3931):580-2. PubMed ID: 17806779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temperature on energy cost and timing of embryonic and larval development of the terrestrially breeding moss frog, Bryobatrachus nimbus.
    Mitchell NJ; Seymour RS
    Physiol Biochem Zool; 2000; 73(6):829-40. PubMed ID: 11121356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic differences in physiological function.
    Gamperl AK; Rodnick KJ; Faust HA; Venn EC; Bennett MT; Crawshaw LI; Keeley ER; Powell MS; Li HW
    Physiol Biochem Zool; 2002; 75(5):413-31. PubMed ID: 12529843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell death and wing reduction during the metamorphosis of sex-specific flightless morphs in winter geometrid moths.
    Niitsu S; Onoue K; Tanio T; Ito H; Naka H; Nakajima H; Sakamoto Y; Someya T; Yano T; Kamito T; Endo H; Yago M
    J Morphol; 2023 Aug; 284(8):e21616. PubMed ID: 37458089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flight energetics of sphinx moths: power input during hovering flight.
    Casey TM
    J Exp Biol; 1976 Jun; 64(3):529-43. PubMed ID: 932631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of thermal acclimation on the relaxation system of crucian carp white myotomal muscle.
    Vornanen M; Tiitu V; Käkelä R; Aho E
    J Exp Zool; 1999 Aug; 284(3):241-51. PubMed ID: 10404115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flight energetics in sphinx moths: heat production and heat loss in Hyles lineata during free flight.
    Casey TM
    J Exp Biol; 1976 Jun; 64(3):545-60. PubMed ID: 932632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of hexokinase in a freeze avoiding insect: role in the winter production of glycerol.
    Muise AM; Storey KB
    Arch Insect Biochem Physiol; 2001 May; 47(1):29-34. PubMed ID: 11317333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic costs of diving and thermal status in European shags (Phalacrocorax aristotelis).
    Enstipp MR; Grémillet D; Lorentsen SH
    J Exp Biol; 2005 Sep; 208(Pt 18):3451-61. PubMed ID: 16155218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A true summer diapause induced by high temperatures in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae).
    Liu Z; Gong P; Wu K; Sun J; Li D
    J Insect Physiol; 2006 Oct; 52(10):1012-20. PubMed ID: 16979652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of incubation temperature on hatching success, energy expenditure for embryonic development, and size and morphology of hatchlings in the oriental garden lizard, Calotes versicolor (Agamidae).
    Ji X; Qiu QB; Diong CH
    J Exp Zool; 2002 Jun; 292(7):649-59. PubMed ID: 12115930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes.
    Yamamoto S; Sota T
    Mol Phylogenet Evol; 2007 Aug; 44(2):711-23. PubMed ID: 17363285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fecundity of the autumnal moth depends on pooled geometrid abundance without a time lag: implications for cyclic population dynamics.
    Klemola T; Andersson T; Ruohomäki K
    J Anim Ecol; 2008 May; 77(3):597-604. PubMed ID: 18284477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient temperature and neck EMG with +Gz loading on a trampoline.
    Sovelius R; Oksa J; Rintala H; Huhtala H; Siitonen S
    Aviat Space Environ Med; 2007 Jun; 78(6):574-8. PubMed ID: 17571657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal metabolic changes in a year-round reproductively active subtropical tree-frog (Hypsiboas prasinus).
    Kiss AC; de Carvalho JE; Navas CA; Gomes FR
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Feb; 152(2):182-8. PubMed ID: 18840537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary adaptation of contractile performance in muscle of ectothermic winter-flying moths.
    Marden J
    J Exp Biol; 1995; 198(Pt 10):2087-94. PubMed ID: 9319999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.