These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17781459)

  • 1. Rubidium-strontium age and elemental and isotopic abundances of some trace elements in lunar samples.
    Murthy VR; Schmitt RA; Rey P
    Science; 1970 Jan; 167(3918):476-9. PubMed ID: 17781459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lunar anorthosites: rare-Earth and other elemental abundances.
    Wakita H; Schmitt RA
    Science; 1970 Nov; 170(3961):969-74. PubMed ID: 17834611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abundances of 30 elements in lunar rocks, soil, and core samples.
    Schmitt RA; Wakita H; Rey P
    Science; 1970 Jan; 167(3918):512-5. PubMed ID: 17781475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary examination of lunar samples from apollo 14.
    Lunar sample Preliminary Examination Team(1)
    Science; 1971 Aug; 173(3998):681-93. PubMed ID: 17798716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium, rubidium, strontium, barium, and rare-Earth concentrations in lunar rocks and separated phases.
    Philpotts JA; Schnetzler CC
    Science; 1970 Jan; 167(3918):493-5. PubMed ID: 17781466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age determinations and isotopic abundance measurements on lunar samples.
    Wanless RK; Loveridge WD; Stevens RD
    Science; 1970 Jan; 167(3918):479-80. PubMed ID: 17781461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major and trace elements and cosmic-ray produced radioisotopes in lunar samples.
    Wänke H; Begemann F; Vilcsek E; Rieder R; Teschke F; Born W; Quijano-Rico M; Voshage H; Wlotzka F
    Science; 1970 Jan; 167(3918):523-5. PubMed ID: 17781480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders.
    García-Ruiz S; Moldovan M; Fortunato G; Wunderli S; García Alonso JI
    Anal Chim Acta; 2007 May; 590(1):55-66. PubMed ID: 17416223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Petrographic, mineralogic, and x-ray fluorescence analysis of lunar igneous-type rocks and spherules.
    Brown GM; Emeleus CH; Holland JG; Phillips R
    Science; 1970 Jan; 167(3918):599-601. PubMed ID: 17781511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation.
    Carlson RW; Borg LE; Gaffney AM; Boyet M
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130246. PubMed ID: 25114305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundance of alkali metals, alkaline and rare earths, and strontium-87/ strontium-86 ratios in lunar samples.
    Gast PW; Hubbard NJ
    Science; 1970 Jan; 167(3918):485-7. PubMed ID: 17781463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen, Silicon, and Aluminum in Lunar Samples by 14 MeV Neutron Activation.
    Ehmann WD; Morgan JW
    Science; 1970 Jan; 167(3918):528-30. PubMed ID: 17781482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotopic constraints on the age and early differentiation of the Earth.
    McCulloch MT
    J R Soc West Aust; 1996 Mar; 79 Pt 1():131-9. PubMed ID: 11541323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ages, irradiation history, and chemical composition of lunar rocks from the sea of tranquillity.
    Albee AL; Burnett DS; Chodos AA; Eugster OJ; Huneke JC; Papanastassiou DA; Podosek FA; Russ GP; Sanz HG; Tera F; Wasserburg GJ
    Science; 1970 Jan; 167(3918):463-6. PubMed ID: 17781453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strontium-Rubidium Age of an Iron Meteorite.
    Wasserburg GJ; Burnett DS; Frondel C
    Science; 1965 Dec; 150(3705):1814-8. PubMed ID: 17841975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multielement analysis of lunar soil and rocks.
    Morrison GH; Gerard JT; Kashuba AT; Gangadharam EV; Rothenberg AM; Potter NM; Miller GB
    Science; 1970 Jan; 167(3918):505-7. PubMed ID: 17781472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gallium, germanium, indium, and iridium in lunar samples.
    Baedecker PA; Wasson JT
    Science; 1970 Jan; 167(3918):503-5. PubMed ID: 17781471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Distribution of rubidium, cesium, beryllium, strontium, and barium in blood and urine in general Chinese population].
    Ding C; Pan Y; Zhang A; Zhu C; Liu D; Xu G; Zheng Y; Yan H
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2015 Dec; 33(12):894-9. PubMed ID: 27122328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium, Rubidium, Strontium, Thorium, Uranium, and the Ratio of Strontium-87 to Strontium-86 in Oceanic Tholeiitic Basalt.
    Tatsumoto M; Hedge CE; Engel AE
    Science; 1965 Nov; 150(3698):886-8. PubMed ID: 17837868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rb-Sr resonance ionization geochronology of the Duluth Gabbro: A proof of concept for in situ dating on the Moon.
    Anderson FS; Levine J; Whitaker TJ
    Rapid Commun Mass Spectrom; 2015 Aug; 29(16):1457-64. PubMed ID: 26212160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.