BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17781487)

  • 1. Oxygen Isotope Fractionation between Minerals and an Estimate of the Temperature of Formation.
    Onuma N; Clayton RN; Mayeda TK
    Science; 1970 Jan; 167(3918):536-8. PubMed ID: 17781487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 18O/16O, 30Si/28Si, D/H, and 13C/12C Studies of Lunar Rocks and Minerals.
    Epstein S; Taylor HP
    Science; 1970 Jan; 167(3918):533-5. PubMed ID: 17781486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for oxygen isotopic exchange in chondrules from Kaba (CV3.1) carbonaceous chondrite during aqueous fluid-rock interaction on the CV parent asteroid.
    Krot AN; Nagashima K; Fintor K; Pál-Molnár E
    Acta Geogr Geol Meteorol Debr Geol Gemorfol Termeszfoldr Sor; 2019 Feb; 246():419-435. PubMed ID: 30930966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of 17O-excess of terrestrial silicate/oxide minerals with respect to Vienna Standard Mean Ocean Water (VSMOW).
    Tanaka R; Nakamura E
    Rapid Commun Mass Spectrom; 2013 Jan; 27(2):285-97. PubMed ID: 23239376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-temperature inter-mineral potassium isotope fractionation: implications for K-Ca-Ar chronology.
    Wilson Kuhnel W; Jacobsen SB; Li Y; Ku Y; Petaev MI; Huang S; Wu Z; Wang 王昆 K
    ACS Earth Space Chem; 2021 Oct; 5(10):2740-2754. PubMed ID: 35005332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary examination of lunar samples from apollo 14.
    Lunar sample Preliminary Examination Team(1)
    Science; 1971 Aug; 173(3998):681-93. PubMed ID: 17798716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gallium, germanium, indium, and iridium in lunar samples.
    Baedecker PA; Wasson JT
    Science; 1970 Jan; 167(3918):503-5. PubMed ID: 17781471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water, hydrogen, deuterium, carbon, carbon-13, and oxygen-18 content of selected lunar material.
    Friedman I; O'neil JR; Adami LH; Gleason JD; Hardcastle K
    Science; 1970 Jan; 167(3918):538-40. PubMed ID: 17781488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and isotopic analyses of hydrocarbon-bearing fluid inclusions in olivine-rich rocks.
    Grozeva NG; Klein F; Seewald JS; Sylva SP
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180431. PubMed ID: 31902341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium stable isotopes support the lunar magma ocean cumulate remelting model for mare basalts.
    Sedaghatpour F; Jacobsen SB
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):73-78. PubMed ID: 30559183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the giant impactor Theia in lunar rocks.
    Herwartz D; Pack A; Friedrichs B; Bischoff A
    Science; 2014 Jun; 344(6188):1146-50. PubMed ID: 24904162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermineral oxygen three-isotope systematics of silicate minerals in equilibrated ordinary chondrites.
    McDougal D; Nakashima D; Tenner TJ; Kita NT; Valley JW; Noguchi T
    Meteorit Planet Sci; 2017 Nov; 52(11):2322-2342. PubMed ID: 29551884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water and carbon in rusty lunar rock 66095.
    Friedman I; Hardcastle KG; Gleason JD
    Science; 1974 Jul; 185(4148):346-9. PubMed ID: 17794303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of crystalline silicates from Comet 81P/Wild 2: Combined study on their oxygen isotopes and mineral chemistry.
    Defouilloy C; Nakashima D; Joswiak DJ; Brownlee DE; Tenner TJ; Kita NT
    Earth Planet Sci Lett; 2017 May; 465():145-154. PubMed ID: 30705461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microprobe analysis of lunar samples.
    Adler I; Walter LS; Lowman PD; Glass BP; French BM; Philpotts JA; Heinrich KJ; Goldstein JI
    Science; 1970 Jan; 167(3918):590-2. PubMed ID: 17781507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. δ18O anchoring to VPDB: calcite digestion with 18O-adjusted ortho-phosphoric acid.
    Wendeberg M; Richter JM; Rothe M; Brand WA
    Rapid Commun Mass Spectrom; 2011 Apr; 25(7):851-60. PubMed ID: 21416521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lunar anorthosites: rare-Earth and other elemental abundances.
    Wakita H; Schmitt RA
    Science; 1970 Nov; 170(3961):969-74. PubMed ID: 17834611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LOW-TEMPERATURE AQUEOUS ALTERATION ON THE CR CHONDRITE PARENT BODY: IMPLICATIONS FROM
    Jilly-Rehak CE; Huss GR; Nagashima K; Schrader DL
    Geochim Cosmochim Acta; 2018 Feb; 222():230-252. PubMed ID: 29713092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Petrographic, mineralogic, and x-ray fluorescence analysis of lunar igneous-type rocks and spherules.
    Brown GM; Emeleus CH; Holland JG; Phillips R
    Science; 1970 Jan; 167(3918):599-601. PubMed ID: 17781511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusions in lunar rocks.
    Roedder E; Weiblen PW
    Science; 1970 Jan; 167(3918):641-4. PubMed ID: 17781528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.