These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 17783311)

  • 1. Uptake of Dissolved Sulfide by Spartina alterniflora: Evidence from Natural Sulfur Isotope Abundance Ratios.
    Carlson PR; Forrest J
    Science; 1982 May; 216(4546):633-5. PubMed ID: 17783311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation of Soil Water Movement and Sulfide Concentration to Spartina alterniflora Production in a Georgia Salt Marsh.
    King GM; Klug MJ; Wiegert RG; Chalmers AG
    Science; 1982 Oct; 218(4567):61-3. PubMed ID: 17776710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA.
    Rolando JL; Kolton M; Song T; Kostka JE
    Microbiome; 2022 Mar; 10(1):37. PubMed ID: 35227326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of invasive cordgrass on presence of Marsh Grassbird in an area where it is not native.
    Ma Z; Gan X; Choi CY; Li B
    Conserv Biol; 2014 Feb; 28(1):150-8. PubMed ID: 24405105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival and growth of the dominant salt marsh grass Spartina alterniflora in an oil industry saline wastewater.
    Gomes Neto A; Costa CS
    Int J Phytoremediation; 2009 Sep; 11(7):640-50. PubMed ID: 19810360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora.
    Arenovski AL; Howes BL
    Oecologia; 1992 Jun; 90(3):316-322. PubMed ID: 28313517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine debris impacts to a tidal fringing-marsh in North Carolina.
    Uhrin AV; Schellinger J
    Mar Pollut Bull; 2011 Dec; 62(12):2605-10. PubMed ID: 22051039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water uptake by roots controls water table movement and sediment oxidation in short spartina marsh.
    Dacey JW; Howes BL
    Science; 1984 May; 224(4648):487-9. PubMed ID: 17753772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient fluxes and sulfur cycling in the organic-rich sediment of Makirina Bay (Central Dalmatia, Croatia).
    Lojen S; Ogrinc N; Dolenec T; Vokal B; Szaran J; Mihelcić G; Branica M
    Sci Total Environ; 2004 Jul; 327(1-3):265-84. PubMed ID: 15172586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China.
    Quan WM; Han JD; Shen AL; Ping XY; Qian PL; Li CJ; Shi LY; Chen YQ
    Mar Environ Res; 2007 Jul; 64(1):21-37. PubMed ID: 17306362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of drainage and soil organic content on growth of Spartina alterniflora (Poaceae) in an artificial salt marsh mesocosm.
    Padgett DE; Brown JL
    Am J Bot; 1999 May; 86(5):697-702. PubMed ID: 10330073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial carbon monoxide consumption in salt marsh sediments.
    King GM
    FEMS Microbiol Ecol; 2007 Jan; 59(1):2-9. PubMed ID: 17059484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recommended design for more accurate duplication of natural conditions in salt marsh creation.
    Darnell TM; Smith EH
    Environ Manage; 2002 Jun; 29(6):813-23. PubMed ID: 11992173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh.
    Bahr M; Crump BC; Klepac-Ceraj V; Teske A; Sogin ML; Hobbie JE
    Environ Microbiol; 2005 Aug; 7(8):1175-85. PubMed ID: 16011754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of dissolved sulfates and sulfites in hydrogen sulfide emission from stagnant water bodies in Sri Lanka.
    Kularatne KI; Dissanayake DP; Mahanama KR
    Chemosphere; 2003 Aug; 52(5):901-7. PubMed ID: 12757791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs.
    Peterson BJ; Howarth RW; Garritt RH
    Science; 1985 Mar; 227(4692):1361-3. PubMed ID: 17793771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biostimulation for the treatment of an oil-contaminated coastal salt marsh.
    Garcia-Blanco S; Venosa AD; Suidan MT; Lee K; Cobanli S; Haines JR
    Biodegradation; 2007 Feb; 18(1):1-15. PubMed ID: 16758277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic and organic sulfur cycling in salt-marsh pore waters.
    Luther GW; Church TM; Scudlark JR; Cosman M
    Science; 1986 May; 232(4751):746-9. PubMed ID: 17769570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and translocation of heavy metals in salt marsh sediments by Spartina patens.
    Suntornvongsagul K; Burke D; Hahn D
    Bull Environ Contam Toxicol; 2007 Apr; 78(3-4):275-9. PubMed ID: 17440673
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.