BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17783736)

  • 1. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip.
    Harrison DJ; Fluri K; Seiler K; Fan Z; Effenhauser CS; Manz A
    Science; 1993 Aug; 261(5123):895-7. PubMed ID: 17783736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of capillary zone electrophoresis performance of powder-blasted and hydrogen fluoride-etched microchannels in glass.
    Pu QS; Luttge R; Gardeniers HJ; van den Berg A
    Electrophoresis; 2003 Jan; 24(1-2):162-71. PubMed ID: 12652587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment.
    Attiya S; Jemere AB; Tang T; Fitzpatrick G; Seiler K; Chiem N; Harrison DJ
    Electrophoresis; 2001 Jan; 22(2):318-27. PubMed ID: 11288900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip.
    Mourzina Y; Steffen A; Kalyagin D; Carius R; Offenhäusser A
    Electrophoresis; 2005 May; 26(9):1849-60. PubMed ID: 15719361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic separations of neuromediators on microfluidic devices.
    Mourzina Y; Kalyagin D; Steffen A; Offenhäusser A
    Talanta; 2006 Oct; 70(3):489-98. PubMed ID: 18970798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a monolithic sampling probe system for automated and continuous sample introduction in microchip-based CE.
    He QH; Fang Q; Du WB; Fang ZL
    Electrophoresis; 2007 Aug; 28(16):2912-9. PubMed ID: 17640089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip pumping for pressure mobilization of the focused zones following microchip isoelectric focusing.
    Guillo C; Karlinsey JM; Landers JP
    Lab Chip; 2007 Jan; 7(1):112-8. PubMed ID: 17180213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturizing free-flow electrophoresis - a critical review.
    Kohlheyer D; Eijkel JC; van den Berg A; Schasfoort RB
    Electrophoresis; 2008 Mar; 29(5):977-93. PubMed ID: 18232029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polydimethylsiloxane/glass capillary electrophoresis microchip for the analysis of biogenic amines using indirect fluorescence detection.
    Beard NP; de Mello AJ
    Electrophoresis; 2002 Jun; 23(11):1722-30. PubMed ID: 12179994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel separation of multiple samples with negative pressure sample injection on a 3-D microfluidic array chip.
    Zhang L; Yin X
    Electrophoresis; 2007 Apr; 28(8):1281-8. PubMed ID: 17366485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic analysis of N-glycans on microfluidic devices.
    Zhuang Z; Starkey JA; Mechref Y; Novotny MV; Jacobson SC
    Anal Chem; 2007 Sep; 79(18):7170-5. PubMed ID: 17685584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic device for integrated restriction digestion reaction and resulting DNA fragment analysis.
    Xie H; Li B; Zhong R; Qin J; Zhu Y; Lin B
    Electrophoresis; 2008 Dec; 29(24):4956-63. PubMed ID: 19130575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed free-flow electrophoresis on chip.
    Zhang CX; Manz A
    Anal Chem; 2003 Nov; 75(21):5759-66. PubMed ID: 14588015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary and microfluidic gradient elution isotachophoresis coupled to capillary zone electrophoresis for femtomolar amino acid detection limits.
    Davis NI; Mamunooru M; Vyas CA; Shackman JG
    Anal Chem; 2009 Jul; 81(13):5452-9. PubMed ID: 19476344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sample introduction techniques for microfabricated separation devices.
    Roddy ES; Xu H; Ewing AG
    Electrophoresis; 2004 Jan; 25(2):229-42. PubMed ID: 14743476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.
    Liu S; Gao L; Pu Q; Lu JJ; Wang X
    J Proteome Res; 2006 Feb; 5(2):323-9. PubMed ID: 16457598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.
    Belder D; Deege A; Kohler F; Ludwig M
    Electrophoresis; 2002 Oct; 23(20):3567-73. PubMed ID: 12412126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of double-stranded DNA fragments in plastic capillary electrophoresis chips by using E99P69E99 as separation medium.
    Song L; Fang D; Kobos RK; Pace SJ; Chu B
    Electrophoresis; 1999 Oct; 20(14):2847-55. PubMed ID: 10546819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.