These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1778407)

  • 1. Humoral factor mediates acetylcholine-induced endothelium-dependent relaxation of chicken aorta.
    Hasegawa K; Nishimura H
    Gen Comp Endocrinol; 1991 Oct; 84(1):164-9. PubMed ID: 1778407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholine stimulates release of endothelium-derived relaxing factor in coronary arteries of human organ donors.
    Blaise GA; Stewart DJ; Guérard MJ
    Can J Cardiol; 1993 Nov; 9(9):813-20. PubMed ID: 8281481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hexasulfobutylated C(60) on the isolated aortic ring of guinea pig.
    Huang SS; Mashino T; Mochizuki M; Chiang LY; Chih LH; Hsieh HM; Teng CM; Okuda K; Hirota T; Tsai MC
    Pharmacology; 2002 Feb; 64(2):91-7. PubMed ID: 11803249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vasodilation induced by acetylcholine and by glyceryl trinitrate in rat aortic and mesenteric vasculature.
    Khan MT; Jothianandan D; Matsunaga K; Furchgott RF
    J Vasc Res; 1992; 29(1):20-8. PubMed ID: 1554863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta.
    Mian KB; Martin W
    Br J Pharmacol; 1995 Jul; 115(6):993-1000. PubMed ID: 7582532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition by sulfhydryl compounds of vascular relaxation induced by nitric oxide and endothelium-derived relaxing factor.
    Jia L; Furchgott RF
    J Pharmacol Exp Ther; 1993 Oct; 267(1):371-8. PubMed ID: 8229764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine- and flow-induced production and release of nitric oxide in arterial and venous endothelial cells.
    Fukaya Y; Ohhashi T
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H99-106. PubMed ID: 8769739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II-induced endothelium-dependent relaxation of fowl aorta.
    Hasegawa K; Nishimura H; Khosla MC
    Am J Physiol; 1993 May; 264(5 Pt 2):R903-11. PubMed ID: 8498599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TEA inhibits ACh-induced EDRF release: endothelial Ca(2+)-dependent K+ channels contribute to vascular tone.
    Demirel E; Rusko J; Laskey RE; Adams DJ; van Breemen C
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H1135-41. PubMed ID: 8092278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation.
    Ignarro LJ; Byrns RE; Buga GM; Wood KS; Chaudhuri G
    J Pharmacol Exp Ther; 1988 Jan; 244(1):181-9. PubMed ID: 2826766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course of changes in endothelium-dependent and -independent relaxation of chronically diabetic aorta: role of reactive oxygen species.
    Karasu C
    Eur J Pharmacol; 2000 Mar; 392(3):163-73. PubMed ID: 10762670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of metabolic inhibitors on endothelium-dependent and endothelium-independent vasodilatation of rat and rabbit aorta.
    Weir CJ; Gibson IF; Martin W
    Br J Pharmacol; 1991 Jan; 102(1):162-6. PubMed ID: 1646055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EDHF mediates the relaxation of stretched canine femoral arteries to acetylcholine.
    Woodley N; Meunier RL; Barclay JK
    Can J Physiol Pharmacol; 2001 Nov; 79(11):924-31. PubMed ID: 11760094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased endothelium-dependent vascular relaxation during reduction of uterine perfusion pressure in pregnant rat.
    Crews JK; Herrington JN; Granger JP; Khalil RA
    Hypertension; 2000 Jan; 35(1 Pt 2):367-72. PubMed ID: 10642326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of EDRF from canine renal artery by leukotriene D4.
    Pawloski JR; Chapnick BM
    Am J Physiol; 1990 May; 258(5 Pt 2):H1449-56. PubMed ID: 2159728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor.
    Martin W; Furchgott RF; Villani GM; Jothianandan D
    J Pharmacol Exp Ther; 1986 May; 237(2):529-38. PubMed ID: 3009791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclopiazonic acid causes endothelium-dependent relaxation in rat aorta.
    Zheng XF; Guan YY; Kwan CY
    Zhongguo Yao Li Xue Bao; 1993 Jan; 14(1):21-6. PubMed ID: 8503281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chronic treatment with 17beta-estradiol and progesterone on endothelium-dependent and endothelium-independent relaxation in isolated aortic rings from ovariectomized rats.
    Vedernikov YP; Liao QP; Jain V; Saade GR; Chwalisz K; Garfield RE
    Am J Obstet Gynecol; 1997 Mar; 176(3):603-8. PubMed ID: 9077614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxing effects of 15-lipoxygenase products of arachidonic acid on rat aorta.
    Uotila P; Vargas R; Wroblewska B; d'Alarcao M; Matsuda SP; Corey EJ; Cunard CM; Ramwell PW
    J Pharmacol Exp Ther; 1987 Sep; 242(3):945-9. PubMed ID: 3116200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelium dysfunction in LDL receptor knockout mice: a role for H2O2.
    Rabelo LA; Cortes SF; Alvarez-Leite JI; Lemos VS
    Br J Pharmacol; 2003 Apr; 138(7):1215-20. PubMed ID: 12711621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.