BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 1778437)

  • 1. Comparison of carbohydrate substrate preferences in eight species of bifidobacteria.
    Degnan BA; Macfarlane GT
    FEMS Microbiol Lett; 1991 Nov; 68(2):151-6. PubMed ID: 1778437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose.
    Liu D; Wang S; Xu B; Guo Y; Zhao J; Liu W; Sun Z; Shao C; Wei X; Jiang Z; Wang X; Liu F; Wang J; Huang L; Hu D; He X; Riedel CU; Yuan J
    Proteomics; 2011 Jul; 11(13):2628-38. PubMed ID: 21630463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate utilization patterns and substrate preferences in Bacteroides thetaiotaomicron.
    Degnan BA; Macfarlane GT
    Anaerobe; 1995 Feb; 1(1):25-33. PubMed ID: 16887504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota.
    Pastell H; Westermann P; Meyer AS; Tuomainen P; Tenkanen M
    J Agric Food Chem; 2009 Sep; 57(18):8598-606. PubMed ID: 19694435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The "dimeriser" hypothesis for sugar permeation through red cell membrane: reinvestigation of original evidence.
    LeFevre PG
    Biochim Biophys Acta; 1966 Jul; 120(3):395-405. PubMed ID: 5966541
    [No Abstract]   [Full Text] [Related]  

  • 6. [Penetration of monosaccharides in sections of guinea pig cortex].
    Joanny P; Corriol J; Kleinzeller A
    C R Seances Soc Biol Fil; 1967; 161(10):2002-8. PubMed ID: 4234188
    [No Abstract]   [Full Text] [Related]  

  • 7. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria.
    Ward RE; NiƱonuevo M; Mills DA; Lebrilla CB; German JB
    Mol Nutr Food Res; 2007 Nov; 51(11):1398-405. PubMed ID: 17966141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium.
    Vernazza CL; Gibson GR; Rastall RA
    J Appl Microbiol; 2006 Apr; 100(4):846-53. PubMed ID: 16553741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate preferences of Bifidobacterium species isolated from the human gut.
    Palframan RJ; Gibson GR; Rastall RA
    Curr Issues Intest Microbiol; 2003 Sep; 4(2):71-5. PubMed ID: 14503691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling of growth and acids production in Bifidobacterium ssp.
    Desjardins ML; Roy D; Toupin C; Goulet J
    J Dairy Sci; 1990 Jun; 73(6):1478-84. PubMed ID: 2384614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monosaccharide digestibility by dairy cows fed diets high in concentrate and containing alfalfa silages.
    Miron J; Ben-Ghedalia D
    J Dairy Sci; 1994 Dec; 77(12):3624-30. PubMed ID: 7699141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and metabolism of glucose and arabinose in Bifidobacterium breve.
    Degnan BA; Macfarlane GT
    Arch Microbiol; 1993; 160(2):144-51. PubMed ID: 8216508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar interaction with the antiluminal surface of the proximal tubule in dog kidney.
    Silverman M
    Am J Physiol; 1977 May; 232(5):F455-60. PubMed ID: 871167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of the interaction of RbCl with some monosaccharides (D-glucose, D-galactose, D-xylose, and D-arabinose) in aqueous solutions at 298.15K.
    Jiang Y; Hu M; Li S; Wang J; Zhuo K
    Carbohydr Res; 2006 Feb; 341(2):262-9. PubMed ID: 16330007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast.
    Cirillo VP
    J Bacteriol; 1968 Feb; 95(2):603-11. PubMed ID: 5640385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of monosaccharides by guinea-pig cerebral-cortex slices.
    Joanny P; Corriol J; Hillman H
    Biochem J; 1969 Apr; 112(3):367-71. PubMed ID: 5801307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is Escherichia coli growing in glucose-limited chemostat culture able to utilize other sugars without lag?
    Lendenmann U; Egli T
    Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():71-8. PubMed ID: 7894722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of catabolite regulatory mechanisms in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis.
    Mountfort DO; Asher RA
    Appl Environ Microbiol; 1983 Dec; 46(6):1331-8. PubMed ID: 6660873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro.
    Bachelard HS
    J Neurochem; 1971 Feb; 18(2):213-22. PubMed ID: 5550086
    [No Abstract]   [Full Text] [Related]  

  • 20. Intestinal glycoproteins of germfree rats. II. Further studies on the chemical composition of water-soluble extracts from intestinal mucus.
    Wold JK; Midtvedt T; Winsnes R
    Acta Chem Scand; 1973; 27(8):2997-3002. PubMed ID: 4778250
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.