These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17784915)

  • 21. Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics.
    Hanikenne M; Nouet C
    Curr Opin Plant Biol; 2011 Jun; 14(3):252-9. PubMed ID: 21531166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytoremediation: biological cleaning of a polluted environment.
    Macek T; Francová K; Kochánková L; Lovecká P; Ryslavá E; Rezek J; Surá M; Triska J; Demnerová K; Macková M
    Rev Environ Health; 2004; 19(1):63-82. PubMed ID: 15186040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.
    Rajkumar M; Ae N; Freitas H
    Chemosphere; 2009 Sep; 77(2):153-60. PubMed ID: 19647283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.
    Liang HM; Lin TH; Chiou JM; Yeh KC
    Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil.
    Castiglione S; Todeschini V; Franchin C; Torrigiani P; Gastaldi D; Cicatelli A; Rinaudo C; Berta G; Biondi S; Lingua G
    Environ Pollut; 2009 Jul; 157(7):2108-17. PubMed ID: 19285369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. When population genetics serves genomics: putting adaptation back in a spatial and historical context.
    Pauwels M; Roosens N; Frérot H; Saumitou-Laprade P
    Curr Opin Plant Biol; 2008 Apr; 11(2):129-34. PubMed ID: 18329331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri.
    Suryawanshi V; Talke IN; Weber M; Eils R; Brors B; Clemens S; Krämer U
    BMC Genomics; 2016 Dec; 17(Suppl 13):1034. PubMed ID: 28155655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal displacement in salt-water-irrigated soil during phytoremediation.
    Wahla IH; Kirkham MB
    Environ Pollut; 2008 Sep; 155(2):271-83. PubMed ID: 18180088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic structure of Suillus luteus populations in heavy metal polluted and nonpolluted habitats.
    Muller LA; Vangronsveld J; Colpaert JV
    Mol Ecol; 2007 Nov; 16(22):4728-37. PubMed ID: 17927704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy).
    Poggio L; Vrscaj B; Schulin R; Hepperle E; Ajmone Marsan F
    Environ Pollut; 2009 Feb; 157(2):680-9. PubMed ID: 18835073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential preadaptation to anthropogenic pollution: evidence from a common quantitative trait locus for zinc and cadmium tolerance in metallicolous and nonmetallicolous accessions of Arabidopsis halleri.
    Meyer CL; Pauwels M; Briset L; Godé C; Salis P; Bourceaux A; Souleman D; Frérot H; Verbruggen N
    New Phytol; 2016 Dec; 212(4):934-943. PubMed ID: 27504589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic pattern of adaptive divergence in Arabidopsis halleri, a model species for tolerance to heavy metal.
    Meyer CL; Vitalis R; Saumitou-Laprade P; Castric V
    Mol Ecol; 2009 May; 18(9):2050-62. PubMed ID: 19434814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress.
    Gamalero E; Lingua G; Berta G; Glick BR
    Can J Microbiol; 2009 May; 55(5):501-14. PubMed ID: 19483778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of bio-energy crops for phytoremediation of metal enriched soils in the Campine region.
    Van Slycken S; Meers E; Meiresonne L; Witters N; Adriaensen K; Peene A; Dejonghe W; Thewys T; Vangronsveld J; Tack FM
    Commun Agric Appl Biol Sci; 2008; 73(1):19-22. PubMed ID: 18831238
    [No Abstract]   [Full Text] [Related]  

  • 36. Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL x environment interactions.
    Frérot H; Faucon MP; Willems G; Godé C; Courseaux A; Darracq A; Verbruggen N; Saumitou-Laprade P
    New Phytol; 2010 Jul; 187(2):355-367. PubMed ID: 20487314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic architecture of a plant adaptive trait: QTL mapping of intraspecific variation for tolerance to metal pollution in Arabidopsis halleri.
    Karam MJ; Souleman D; Schvartzman MS; Gallina S; Spielmann J; Poncet C; Bouchez O; Pauwels M; Hanikenne M; Frérot H
    Heredity (Edinb); 2019 Jun; 122(6):877-892. PubMed ID: 30670845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.
    Abhilash PC; Jamil S; Singh N
    Biotechnol Adv; 2009; 27(4):474-88. PubMed ID: 19371778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofortification and phytoremediation.
    Zhao FJ; McGrath SP
    Curr Opin Plant Biol; 2009 Jun; 12(3):373-80. PubMed ID: 19473871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poorly known relatives of Arabidopsis thaliana.
    Clauss MJ; Koch MA
    Trends Plant Sci; 2006 Sep; 11(9):449-59. PubMed ID: 16893672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.