These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 17784943)
1. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus. Hübscher J; Jansen A; Kotte O; Schäfer J; Majcherczyk PA; Harris LG; Bierbaum G; Heinemann M; Berger-Bächi B BMC Genomics; 2007 Sep; 8():307. PubMed ID: 17784943 [TBL] [Abstract][Full Text] [Related]
2. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. Strandén AM; Ehlert K; Labischinski H; Berger-Bächi B J Bacteriol; 1997 Jan; 179(1):9-16. PubMed ID: 8981974 [TBL] [Abstract][Full Text] [Related]
3. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. Sugai M; Fujiwara T; Ohta K; Komatsuzawa H; Ohara M; Suginaka H J Bacteriol; 1997 Jul; 179(13):4311-8. PubMed ID: 9209049 [TBL] [Abstract][Full Text] [Related]
4. Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation. Tschierske M; Ehlert K; Strandén AM; Berger-Bächi B FEMS Microbiol Lett; 1997 Aug; 153(2):261-4. PubMed ID: 9271851 [TBL] [Abstract][Full Text] [Related]
5. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target? Kopp U; Roos M; Wecke J; Labischinski H Microb Drug Resist; 1996; 2(1):29-41. PubMed ID: 9158720 [TBL] [Abstract][Full Text] [Related]
6. Identification of three additional femAB-like open reading frames in Staphylococcus aureus. Tschierske M; Mori C; Rohrer S; Ehlert K; Shaw KJ; Berger-Bächi B FEMS Microbiol Lett; 1999 Feb; 171(2):97-102. PubMed ID: 10077832 [TBL] [Abstract][Full Text] [Related]
7. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. Henze U; Sidow T; Wecke J; Labischinski H; Berger-Bächi B J Bacteriol; 1993 Mar; 175(6):1612-20. PubMed ID: 8383661 [TBL] [Abstract][Full Text] [Related]
8. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. Ehlert K; Schröder W; Labischinski H J Bacteriol; 1997 Dec; 179(23):7573-6. PubMed ID: 9393725 [TBL] [Abstract][Full Text] [Related]
9. The pentaglycine bridges of Staphylococcus aureus peptidoglycan are essential for cell integrity. Monteiro JM; Covas G; Rausch D; Filipe SR; Schneider T; Sahl HG; Pinho MG Sci Rep; 2019 Mar; 9(1):5010. PubMed ID: 30899062 [TBL] [Abstract][Full Text] [Related]
11. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Rohrer S; Ehlert K; Tschierske M; Labischinski H; Berger-Bächi B Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9351-6. PubMed ID: 10430946 [TBL] [Abstract][Full Text] [Related]
12. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Schneider T; Senn MM; Berger-Bächi B; Tossi A; Sahl HG; Wiedemann I Mol Microbiol; 2004 Jul; 53(2):675-85. PubMed ID: 15228543 [TBL] [Abstract][Full Text] [Related]
13. Additional routes to Staphylococcus aureus daptomycin resistance as revealed by comparative genome sequencing, transcriptional profiling, and phenotypic studies. Song Y; Rubio A; Jayaswal RK; Silverman JA; Wilkinson BJ PLoS One; 2013; 8(3):e58469. PubMed ID: 23554895 [TBL] [Abstract][Full Text] [Related]
14. High-level (beta)-lactam resistance and cell wall synthesis catalyzed by the mecA homologue of Staphylococcus sciuri introduced into Staphylococcus aureus. Severin A; Wu SW; Tabei K; Tomasz A J Bacteriol; 2005 Oct; 187(19):6651-8. PubMed ID: 16166526 [TBL] [Abstract][Full Text] [Related]
16. Extensive and genome-wide changes in the transcription profile of Staphylococcus aureus induced by modulating the transcription of the cell wall synthesis gene murF. Sobral RG; Jones AE; Des Etages SG; Dougherty TJ; Peitzsch RM; Gaasterland T; Ludovice AM; de Lencastre H; Tomasz A J Bacteriol; 2007 Mar; 189(6):2376-91. PubMed ID: 17194794 [TBL] [Abstract][Full Text] [Related]
17. Methicillin-resistance in Staphylococcus aureus - molecular basis, novel targets and antibiotic therapy. Ehlert K Curr Pharm Des; 1999 Feb; 5(2):45-55. PubMed ID: 10066883 [TBL] [Abstract][Full Text] [Related]
18. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. Maidhof H; Reinicke B; Blümel P; Berger-Bächi B; Labischinski H J Bacteriol; 1991 Jun; 173(11):3507-13. PubMed ID: 2045371 [TBL] [Abstract][Full Text] [Related]
19. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. Gründling A; Schneewind O J Bacteriol; 2006 Apr; 188(7):2463-72. PubMed ID: 16547033 [TBL] [Abstract][Full Text] [Related]
20. Identification of sarV (SA2062), a new transcriptional regulator, is repressed by SarA and MgrA (SA0641) and involved in the regulation of autolysis in Staphylococcus aureus. Manna AC; Ingavale SS; Maloney M; van Wamel W; Cheung AL J Bacteriol; 2004 Aug; 186(16):5267-80. PubMed ID: 15292128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]