BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 17785278)

  • 1. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.
    Papadopoulos A; Reid BJ; Semple KT
    J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil.
    Rhodes AH; Dew NM; Semple KT
    Environ Toxicol Chem; 2008 Jul; 27(7):1488-95. PubMed ID: 18260689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil.
    Towell MG; Browne LA; Paton GI; Semple KT
    Environ Pollut; 2011 Mar; 159(3):706-15. PubMed ID: 21195517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of a NAPL on the loss and biodegradation of 14C-phenanthrene residues in two dissimilar soils.
    Swindell AL; Reid BJ
    Chemosphere; 2007 Jan; 66(2):332-9. PubMed ID: 16766015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydroxypropyl-beta-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil.
    Stroud JL; Tzima M; Paton GI; Semple KT
    Environ Pollut; 2009 Oct; 157(10):2678-83. PubMed ID: 19501437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.).
    Xu SY; Chen YX; Lin Q; Wu WX; Xue SG; Shen CF
    J Environ Sci (China); 2005; 17(5):817-22. PubMed ID: 16313010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.
    Xu SY; Chen YX; Wu WX; Wang KX; Lin Q; Liang XQ
    Sci Total Environ; 2006 Jun; 363(1-3):206-15. PubMed ID: 15985280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique.
    Stokes JD; Wilkinson A; Reid BJ; Jones KC; Semple KT
    Environ Toxicol Chem; 2005 Jun; 24(6):1325-30. PubMed ID: 16117107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking chemical extraction to microbial degradation of 14C-hexadecane in soil.
    Stroud JL; Paton GI; Semple KT
    Environ Pollut; 2008 Nov; 156(2):474-81. PubMed ID: 18316143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique.
    Papadopoulos A; Paton GI; Reid BJ; Semple KT
    J Environ Monit; 2007 Jun; 9(6):516-22. PubMed ID: 17554422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil.
    Anyanwu IN; Ikpikpini OC; Semple KT
    Ecotoxicol Environ Saf; 2018 Jan; 147():594-601. PubMed ID: 28923724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of metals on the adsorption and extractability of 14C-phenanthrene in soils.
    Saison C; Perrin-Ganier C; Amellal S; Morel JL; Schiavon M
    Chemosphere; 2004 Apr; 55(3):477-85. PubMed ID: 14987946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-beta-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS).
    Hua G; Broderick J; Semple KT; Killham K; Singleton I
    Environ Pollut; 2007 Jul; 148(1):176-81. PubMed ID: 17240015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of microbial pyrene and benzo[a]pyrene mineralization in liquid medium, soil slurry, and soil.
    Derz K; Schmidt B; Schwiening S; Schuphan I
    J Environ Sci Health B; 2006; 41(5):471-84. PubMed ID: 16785161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate and behaviour of phenanthrene in the natural and artificial soils.
    Hofman J; Rhodes A; Semple KT
    Environ Pollut; 2008 Mar; 152(2):468-75. PubMed ID: 17850942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a more appropriate water based extraction for the assessment of organic contaminant availability.
    Hickman ZA; Reid BJ
    Environ Pollut; 2005 Nov; 138(2):299-306. PubMed ID: 15936859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation of polycyclic aromatic hydrocarbon residues in soils.
    Gao Y; Zeng Y; Shen Q; Ling W; Han J
    J Hazard Mater; 2009 Dec; 172(2-3):897-903. PubMed ID: 19692170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of pyrene bioavailability in soil by mild hydroxypropyl-β-cyclodextrin extraction.
    Khan MI; Cheema SA; Shen C; Zhang C; Tang X; Malik Z; Chen X; Chen Y
    Arch Environ Contam Toxicol; 2011 Jan; 60(1):107-15. PubMed ID: 20437042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction.
    Allan IJ; Semple KT; Hare R; Reid BJ
    Environ Pollut; 2006 Nov; 144(2):562-71. PubMed ID: 16545896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.