These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 17785418)

  • 1. Dual role of the RNA substrate in selectivity and catalysis by terminal uridylyl transferases.
    Stagno J; Aphasizheva I; Aphasizhev R; Luecke H
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14634-9. PubMed ID: 17785418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UTP-bound and Apo structures of a minimal RNA uridylyltransferase.
    Stagno J; Aphasizheva I; Rosengarth A; Luecke H; Aphasizhev R
    J Mol Biol; 2007 Feb; 366(3):882-99. PubMed ID: 17189640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the mitochondrial editosome-like complex associated TUTase 1 reveals divergent mechanisms of UTP selection and domain organization.
    Stagno J; Aphasizheva I; Bruystens J; Luecke H; Aphasizhev R
    J Mol Biol; 2010 Jun; 399(3):464-75. PubMed ID: 20403364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple terminal uridylyltransferases of trypanosomes.
    Aphasizhev R; Aphasizheva I; Simpson L
    FEBS Lett; 2004 Aug; 572(1-3):15-8. PubMed ID: 15304317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA editing uridylyltransferases of trypanosomatids.
    Aphasizhev R; Aphasizheva I
    Methods Enzymol; 2007; 424():55-73. PubMed ID: 17662836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei.
    Deng J; Ernst NL; Turley S; Stuart KD; Hol WG
    EMBO J; 2005 Dec; 24(23):4007-17. PubMed ID: 16281058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of U-insertion RNA editing in trypanosome mitochondria: characterization of RET2 functional domains by mutational analysis.
    Ringpis GE; Stagno J; Aphasizhev R
    J Mol Biol; 2010 Jun; 399(5):696-706. PubMed ID: 20417643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terminal RNA uridylyltransferases of trypanosomes.
    Aphasizhev R; Aphasizheva I
    Biochim Biophys Acta; 2008 Apr; 1779(4):270-80. PubMed ID: 18191648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and enzymatic investigation of the Sulfolobus solfataricus uridylate kinase shows competitive UTP inhibition and the lack of GTP stimulation.
    Jensen KS; Johansson E; Jensen KF
    Biochemistry; 2007 Mar; 46(10):2745-57. PubMed ID: 17297917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elements of nucleotide specificity in the Trypanosoma brucei mitochondrial RNA editing enzyme RET2.
    Demir Ö; Amaro RE
    J Chem Inf Model; 2012 May; 52(5):1308-18. PubMed ID: 22512810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and kinetic studies of the allosteric transition in Sulfolobus solfataricus uracil phosphoribosyltransferase: Permanent activation by engineering of the C-terminus.
    Christoffersen S; Kadziola A; Johansson E; Rasmussen M; Willemoës M; Jensen KF
    J Mol Biol; 2009 Oct; 393(2):464-77. PubMed ID: 19683539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fold recognition, homology modeling, docking simulations, kinetics analysis and mutagenesis of ATP/CTP:tRNA nucleotidyltransferase from Methanococcus jannaschii.
    Bujnicki JM; Albert MA; Nelson DJ; Thurlow DL
    Proteins; 2003 Aug; 52(3):349-59. PubMed ID: 12866049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UTP-dependent turnover of Trypanosoma brucei mitochondrial mRNA requires UTP polymerization and involves the RET1 TUTase.
    Ryan CM; Read LK
    RNA; 2005 May; 11(5):763-73. PubMed ID: 15811918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1.
    Deng J; Schnaufer A; Salavati R; Stuart KD; Hol WG
    J Mol Biol; 2004 Oct; 343(3):601-13. PubMed ID: 15465048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for template-independent RNA polymerization.
    Tomita K; Fukai S; Ishitani R; Ueda T; Takeuchi N; Vassylyev DG; Nureki O
    Nature; 2004 Aug; 430(7000):700-4. PubMed ID: 15295603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of Arabidopsis terminal uridylyl transferase URT1.
    Zhu L; Hu Q; Cheng L; Jiang Y; Lv M; Liu Y; Li F; Shi Y; Gong Q
    Biochem Biophys Res Commun; 2020 Apr; 524(2):490-496. PubMed ID: 32008746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis of the Substrate Selectivity of Viperin.
    Fenwick MK; Su D; Dong M; Lin H; Ealick SE
    Biochemistry; 2020 Feb; 59(5):652-662. PubMed ID: 31917549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity.
    Lunde BM; Magler I; Meinhart A
    Nucleic Acids Res; 2012 Oct; 40(19):9815-24. PubMed ID: 22885303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of substrate specificity in RNA-dependent nucleotidyl transferases.
    Martin G; Doublié S; Keller W
    Biochim Biophys Acta; 2008 Apr; 1779(4):206-16. PubMed ID: 18177750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase.
    Trippe R; Guschina E; Hossbach M; Urlaub H; Lührmann R; Benecke BJ
    RNA; 2006 Aug; 12(8):1494-504. PubMed ID: 16790842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.