BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 17785446)

  • 21. PARP-1 binds E2F-1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription during re-entry of quiescent cells into S phase.
    Simbulan-Rosenthal CM; Rosenthal DS; Luo R; Samara R; Espinoza LA; Hassa PO; Hottiger MO; Smulson ME
    Oncogene; 2003 Nov; 22(52):8460-71. PubMed ID: 14627987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes.
    Clark NJ; Kramer M; Muthurajan UM; Luger K
    J Biol Chem; 2012 Sep; 287(39):32430-9. PubMed ID: 22854955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation between carcinogenesis, chromatin structure and poly(ADP-ribosylation) (review).
    Boulikas T
    Anticancer Res; 1991; 11(2):489-527. PubMed ID: 1905900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin.
    Chassé MH; Muthurajan UM; Clark NJ; Kramer MA; Chakravarthy S; Irving T; Luger K
    Methods Mol Biol; 2017; 1608():231-253. PubMed ID: 28695514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Irreversible binding of poly(ADP)ribose polymerase cleavage product to DNA ends revealed by atomic force microscopy: possible role in apoptosis.
    Smulson ME; Pang D; Jung M; Dimtchev A; Chasovskikh S; Spoonde A; Simbulan-Rosenthal C; Rosenthal D; Yakovlev A; Dritschilo A
    Cancer Res; 1998 Aug; 58(16):3495-8. PubMed ID: 9721847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone.
    Muthurajan UM; Hepler MR; Hieb AR; Clark NJ; Kramer M; Yao T; Luger K
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12752-7. PubMed ID: 25136112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ways of PARP.
    Pirrotta V
    Cell; 2004 Dec; 119(6):735-6. PubMed ID: 15607968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif.
    Tao Z; Gao P; Hoffman DW; Liu HW
    Biochemistry; 2008 May; 47(21):5804-13. PubMed ID: 18452307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PARP-1 and gene regulation: progress and puzzles.
    Kraus WL; Hottiger MO
    Mol Aspects Med; 2013 Dec; 34(6):1109-23. PubMed ID: 23357755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptional regulation of mouse mu opioid receptor gene in neuronal cells by poly(ADP-ribose) polymerase-1.
    Choi HS; Hwang CK; Kim CS; Song KY; Law PY; Loh HH; Wei LN
    J Cell Mol Med; 2008 Dec; 12(6A):2319-33. PubMed ID: 18266974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage.
    Riccio AA; Cingolani G; Pascal JM
    Nucleic Acids Res; 2016 Feb; 44(4):1691-702. PubMed ID: 26704974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation.
    Langelier MF; Servent KM; Rogers EE; Pascal JM
    J Biol Chem; 2008 Feb; 283(7):4105-14. PubMed ID: 18055453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding mode of novel 1-substituted quinazoline derivatives to poly(ADP-ribose) polymerase-catalytic domain, revealed by X-ray crystal structure analysis of complexes.
    Matsumoto K; Kondo K; Ota T; Kawashima A; Kitamura K; Ishida T
    Biochim Biophys Acta; 2006 May; 1764(5):913-9. PubMed ID: 16631419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888.
    Karlberg T; Hammarström M; Schütz P; Svensson L; Schüler H
    Biochemistry; 2010 Feb; 49(6):1056-8. PubMed ID: 20092359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association.
    Buki KG; Bauer PI; Hakam A; Kun E
    J Biol Chem; 1995 Feb; 270(7):3370-7. PubMed ID: 7852424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene therapy for prostate cancer by targeting poly(ADP-ribose) polymerase.
    Trofimova I; Dimtchev A; Jung M; Rosenthal D; Smulson M; Dritschilo A; Soldatenkov V
    Cancer Res; 2002 Dec; 62(23):6879-83. PubMed ID: 12460902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cooperative targeting of PARP-1 domains to regulate metabolic and developmental genes.
    Bamgbose G; Johnson S; Tulin A
    Front Endocrinol (Lausanne); 2023; 14():1152570. PubMed ID: 37347109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutations in the amino-terminal domain of the human poly(ADP-ribose) polymerase that affect its catalytic activity but not its DNA binding capacity.
    Trucco C; Flatter E; Fribourg S; de Murcia G; Ménissier-de Murcia J
    FEBS Lett; 1996 Dec; 399(3):313-6. PubMed ID: 8985170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation.
    Haenni SS; Hassa PO; Altmeyer M; Fey M; Imhof R; Hottiger MO
    Int J Biochem Cell Biol; 2008; 40(10):2274-83. PubMed ID: 18436469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA-dependent SUMO modification of PARP-1.
    Zilio N; Williamson CT; Eustermann S; Shah R; West SC; Neuhaus D; Ulrich HD
    DNA Repair (Amst); 2013 Sep; 12(9):761-73. PubMed ID: 23871147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.