BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 17786489)

  • 1. HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations.
    Hornak V; Okur A; Rizzo RC; Simmerling C
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):915-20. PubMed ID: 16418268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of HIV-1 protease flaps probed by comparison of molecular dynamics simulation ensembles and EPR experiments.
    Ding F; Layten M; Simmerling C
    J Am Chem Soc; 2008 Jun; 130(23):7184-5. PubMed ID: 18479129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations.
    Freedberg DI; Ishima R; Jacob J; Wang YX; Kustanovich I; Louis JM; Torchia DA
    Protein Sci; 2002 Feb; 11(2):221-32. PubMed ID: 11790832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate.
    Prabu-Jeyabalan M; Nalivaika EA; Romano K; Schiffer CA
    J Virol; 2006 Apr; 80(7):3607-16. PubMed ID: 16537628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence requirements of the HIV-1 protease flap region determined by saturation mutagenesis and kinetic analysis of flap mutants.
    Shao W; Everitt L; Manchester M; Loeb DD; Hutchison CA; Swanstrom R
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2243-8. PubMed ID: 9122179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of Flap Opening in HIV-1 Protease: String Method Calculations.
    Gardner JM; Abrams CF
    J Phys Chem B; 2019 Nov; 123(45):9584-9591. PubMed ID: 31640343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whiskers-less HIV-protease: a possible way for HIV-1 deactivation.
    Dayer MR; Dayer MS
    J Biomed Sci; 2013 Sep; 20(1):67. PubMed ID: 24024748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed EPR characterization of HIV-1 protease conformational sampling and inhibitor-induced population shifts.
    Liu Z; Casey TM; Blackburn ME; Huang X; Pham L; de Vera IM; Carter JD; Kear-Scott JL; Veloro AM; Galiano L; Fanucci GE
    Phys Chem Chem Phys; 2016 Feb; 18(8):5819-31. PubMed ID: 26489725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIV Protease Hinge Region Insertions at Codon 38 Affect Enzyme Kinetics, Conformational Stability and Dynamics.
    Sheik Ismail Z; Worth R; Mosebi S; Sayed Y
    Protein J; 2023 Oct; 42(5):490-501. PubMed ID: 37421557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamozones are the most obvious sign of the evolution of conformational dynamics in HIV-1 protease.
    Rahimi M; Taghdir M; Abasi Joozdani F
    Sci Rep; 2023 Aug; 13(1):14179. PubMed ID: 37648682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of the force decomposition machine for molecular dynamics simulations.
    Borštnik U; Miller BT; Brooks BR; Janežič D
    J Mol Graph Model; 2012 Sep; 38():243-7. PubMed ID: 23085166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-Analyst: a program for efficient analysis of protein conformational changes by torsion angles.
    Ai R; Qaiser Fatmi M; Chang CE
    J Comput Aided Mol Des; 2010 Oct; 24(10):819-27. PubMed ID: 20689979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology modeling and molecular dynamics simulation studies of a marine alkaline protease.
    Ji X; Wang W; Zheng Y; Hao J; Sun M
    Bioinform Biol Insights; 2012; 6():255-63. PubMed ID: 23226008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The discovery of subunit-selective GluN1/GluN2B NMDAR antagonist via pharmacophere-based virtual screening.
    Tang J; Jin J; Huang Z; An F; Huang C; Jiang W
    Exp Biol Med (Maywood); 2023 Dec; 248(24):2560-2577. PubMed ID: 38282535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease.
    Dakshinamoorthy A; Asmita A; Senapati S
    ACS Omega; 2023 Mar; 8(11):9748-9763. PubMed ID: 36969469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-resistant molecular mechanism of CRF01_AE HIV-1 protease due to V82F mutation.
    Liu X; Xiu Z; Hao C
    J Comput Aided Mol Des; 2009 May; 23(5):261-72. PubMed ID: 19219633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic simulations of the HIV-1 protease folding inhibition.
    Verkhivker G; Tiana G; Camilloni C; Provasi D; Broglia RA
    Biophys J; 2008 Jul; 95(2):550-62. PubMed ID: 18375506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics studies on HIV-1 protease: a comparison of the flap motions between wild type protease and the M46I/G51D double mutant.
    Lauria A; Ippolito M; Almerico AM
    J Mol Model; 2007 Nov; 13(11):1151-6. PubMed ID: 17786489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on adaptability of binding residues and flap region of TMC-114 resistance HIV-1 protease mutants.
    Purohit R; Rajendran V; Sethumadhavan R
    J Biomol Struct Dyn; 2011 Aug; 29(1):137-52. PubMed ID: 21696230
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.