These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 17786911)
1. Numerical characterization of the conformation of cyclic peptides and its application. Liu X; Xiu Z; Li X J Comput Chem; 2007 Dec; 28(16):2545-51. PubMed ID: 17786911 [TBL] [Abstract][Full Text] [Related]
2. Computer simulations of the flexibility of a series of synthetic cyclic peptide analogues. Thomas A; Roux B; Smith JC Biopolymers; 1993 Aug; 33(8):1249-70. PubMed ID: 8364158 [TBL] [Abstract][Full Text] [Related]
3. Conformational preference and potential templates of N-methylated cyclic pentaalanine peptides. Chatterjee J; Mierke DF; Kessler H Chemistry; 2008; 14(5):1508-17. PubMed ID: 18080261 [TBL] [Abstract][Full Text] [Related]
4. The conformation of cyclo(-D-Pro-Ala4-) as a model for cyclic pentapeptides of the DL4 type. Heller M; Sukopp M; Tsomaia N; John M; Mierke DF; Reif B; Kessler H J Am Chem Soc; 2006 Oct; 128(42):13806-14. PubMed ID: 17044709 [TBL] [Abstract][Full Text] [Related]
5. Exploring the conformational space of cyclic peptides by a stochastic search method. Rayan A; Senderowitz H; Goldblum A J Mol Graph Model; 2004 May; 22(5):319-33. PubMed ID: 15099829 [TBL] [Abstract][Full Text] [Related]
6. N-methylated cyclic pentaalanine peptides as template structures. Chatterjee J; Mierke D; Kessler H J Am Chem Soc; 2006 Nov; 128(47):15164-72. PubMed ID: 17117868 [TBL] [Abstract][Full Text] [Related]
7. Processable cyclic peptide nanotubes with tunable interiors. Hourani R; Zhang C; van der Weegen R; Ruiz L; Li C; Keten S; Helms BA; Xu T J Am Chem Soc; 2011 Oct; 133(39):15296-9. PubMed ID: 21894889 [TBL] [Abstract][Full Text] [Related]
9. [Structure of molecules of crystalline (Phe1, Ala9)antamanide]. Vasil'ev AD Bioorg Khim; 1993 Mar; 19(3):293-8. PubMed ID: 8489530 [TBL] [Abstract][Full Text] [Related]
10. Structures of cyclic, antimicrobial peptides in a membrane-mimicking environment define requirements for activity. Appelt C; Wessolowski A; Dathe M; Schmieder P J Pept Sci; 2008 Apr; 14(4):524-7. PubMed ID: 17985394 [TBL] [Abstract][Full Text] [Related]
11. Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues. Rosenthal-Aizman K; Svensson G; Undén A J Am Chem Soc; 2004 Mar; 126(11):3372-3. PubMed ID: 15025434 [TBL] [Abstract][Full Text] [Related]
12. A general method for designing combinatorial peptide libraries decodable by amino acid analysis. Kofoed J; Reymond JL J Comb Chem; 2007; 9(6):1046-52. PubMed ID: 17922554 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence decay time distribution analysis of cyclic enkephalin analogues. Influence of the solvents and configuration of amino acids in position 2 and 3 on changes in conformation. Malicka J; Groth M; Czaplewski C; Liwo A; Wiczk W Acta Biochim Pol; 1999; 46(3):615-29. PubMed ID: 10698270 [TBL] [Abstract][Full Text] [Related]
14. Empirical modifications to the Amber/OPLS potential for predicting the solution conformations of cyclic peptides by vacuum calculations. Keasar C; Rosenfeld R Fold Des; 1998; 3(5):379-88. PubMed ID: 9806941 [TBL] [Abstract][Full Text] [Related]
15. c[D-pro-Pro-D-pro-N-methyl-Ala] adopts a rigid conformation that serves as a scaffold to mimic reverse-turns. Arbor S; Kao J; Wu Y; Marshall GR Biopolymers; 2008; 90(3):384-93. PubMed ID: 17941003 [TBL] [Abstract][Full Text] [Related]
16. Conformational consequences of regio- and stereoselective disulfide bridge oxidation in a cyclic peptide. Malesević M; Jahreis G; Wawra S; Fischer G; Lücke C Chembiochem; 2008 Jan; 9(1):46-9. PubMed ID: 18072227 [No Abstract] [Full Text] [Related]
17. Bromoacetylated synthetic peptides. Starting materials for cyclic peptides, peptomers, and peptide conjugates. Robey FA Methods Mol Biol; 1994; 35():73-90. PubMed ID: 7894610 [No Abstract] [Full Text] [Related]
18. Influence of alternating L-/D-amino acid chiralities and disulfide bond geometry on the capacity of cysteine-containing reversible cyclic peptides to disperse carbon nanotubes. Becraft EJ; Klimenko AS; Dieckmann GR Biopolymers; 2009; 92(3):212-21. PubMed ID: 19283829 [TBL] [Abstract][Full Text] [Related]
19. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. Rezai T; Bock JE; Zhou MV; Kalyanaraman C; Lokey RS; Jacobson MP J Am Chem Soc; 2006 Nov; 128(43):14073-80. PubMed ID: 17061890 [TBL] [Abstract][Full Text] [Related]
20. Vibrational circular dichroism and IR spectral analysis as a test of theoretical conformational modeling for a cyclic hexapeptide. Bour P; Kim J; Kapitan J; Hammer RP; Huang R; Wu L; Keiderling TA Chirality; 2008 Nov; 20(10):1104-19. PubMed ID: 18506832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]