These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 17786967)
1. Estimation of cholesterol solubilization by a mixed micelle binding model in aqueous tauroursodeoxycholate:lecithin:cholesterol solutions. Higuchi WI; Tzeng CS; Chang SJ; Chiang HJ; Liu CL J Pharm Sci; 2008 Jan; 97(1):340-9. PubMed ID: 17786967 [TBL] [Abstract][Full Text] [Related]
2. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles. Luk AS; Kaler EW; Lee SP Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403 [TBL] [Abstract][Full Text] [Related]
3. Cholesterol (thermodynamic) activity determinations in bile salt-lecithin-cholesterol systems and cholesterol-rich liquid crystalline mesophase formation. Jain UK; Higuchi WI; Liu CL; Lee PH; Mazer NA Pharm Res; 1992 Jun; 9(6):792-9. PubMed ID: 1409363 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of cholesterol nucleation with time in supersaturated model bile. Liu CL; Chang SJ; Chiang HJ Chem Phys Lipids; 2011 Feb; 164(2):125-30. PubMed ID: 21172327 [TBL] [Abstract][Full Text] [Related]
5. Adsorption of mixtures of bile salt taurine conjugates to lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection. Heuman DM; Bajaj RS; Lin Q J Lipid Res; 1996 Mar; 37(3):562-73. PubMed ID: 8728319 [TBL] [Abstract][Full Text] [Related]
6. Cholesterol Binding to Simple Micelles in Aqueous Bile-Salt-Cholesterol Solutions. Liu CL J Colloid Interface Sci; 1997 Jun; 190(2):261-8. PubMed ID: 9241165 [TBL] [Abstract][Full Text] [Related]
7. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions. Mazer NA; Carey MC Biochemistry; 1983 Jan; 22(2):426-42. PubMed ID: 6824637 [TBL] [Abstract][Full Text] [Related]
8. Dissolution of human cholesterol gallstones in bile salt/lecithin mixtures: effect of bile salt hydrophobicity and various pHs. Angelico M; Mogavero L; Baiocchi L; Nistri A; Gandin C Scand J Gastroenterol; 1995 Dec; 30(12):1178-85. PubMed ID: 9053971 [TBL] [Abstract][Full Text] [Related]
9. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation. Cohen DE; Angelico M; Carey MC J Lipid Res; 1990 Jan; 31(1):55-70. PubMed ID: 2313205 [TBL] [Abstract][Full Text] [Related]
10. Tauroursodeoxycholate counteracts hepatocellular lysis induced by tensioactive bile salts by preventing plasma membrane-micelle transition. Basiglio CL; Mottino AD; Roma MG Chem Biol Interact; 2010 Dec; 188(3):386-92. PubMed ID: 20797393 [TBL] [Abstract][Full Text] [Related]
11. Silicone polymer uptake method for determination of cholesterol thermodynamic activity in model bile systems. Lee PH; Cheng DC; Takayama K; Higuchi WI J Pharm Sci; 1988 Jul; 77(7):610-4. PubMed ID: 3171948 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates. Carey MC; Montet JC; Phillips MC; Armstrong MJ; Mazer NA Biochemistry; 1981 Jun; 20(12):3637-48. PubMed ID: 7260061 [TBL] [Abstract][Full Text] [Related]
13. Taurine conjugate of ursodeoxycholate plays a major role in the hepatoprotective effect against cholestasis induced by taurochenodeoxycholate in rats. Tsukahara K; Kanai S; Ohta M; Kitani K Liver; 1993 Oct; 13(5):262-9. PubMed ID: 8259039 [TBL] [Abstract][Full Text] [Related]
14. Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile. Cohen DE; Leighton LS; Carey MC Am J Physiol; 1992 Sep; 263(3 Pt 1):G386-95. PubMed ID: 1415551 [TBL] [Abstract][Full Text] [Related]
15. Effects of hydrophobic and hydrophilic bile salt mixtures on cholesterol crystallization in model biles. Venneman NG; Huisman SJ; Moschetta A; vanBerge-Henegouwen GP; van Erpecum KJ Biochim Biophys Acta; 2002 Jul; 1583(2):221-8. PubMed ID: 12117566 [TBL] [Abstract][Full Text] [Related]
16. Acyl chain unsaturation modulates distribution of lecithin molecular species between mixed micelles and vesicles in model bile. Implications for particle structure and metastable cholesterol solubilities. Cohen DE; Carey MC J Lipid Res; 1991 Aug; 32(8):1291-302. PubMed ID: 1770311 [TBL] [Abstract][Full Text] [Related]
17. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. Rupp C; Steckel H; Müller BW Int J Pharm; 2010 Aug; 395(1-2):272-80. PubMed ID: 20580793 [TBL] [Abstract][Full Text] [Related]
18. Micellization of conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into their micelles: comparison with other four conjugated bile salts species. Matsuoka K; Suzuki M; Honda C; Endo K; Moroi Y Chem Phys Lipids; 2006 Jan; 139(1):1-10. PubMed ID: 16256096 [TBL] [Abstract][Full Text] [Related]
19. Cholesterol crystallite nucleation in supersaturated model biles from a thermodynamic standpoint. Liu CL; Higuchi WI Biochim Biophys Acta; 2002 Oct; 1588(1):15-25. PubMed ID: 12379309 [TBL] [Abstract][Full Text] [Related]
20. Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions. Long MA; Kaler EW; Lee SP Biophys J; 1994 Oct; 67(4):1733-42. PubMed ID: 7819505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]