BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17786989)

  • 1. Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins.
    Li H; Yap CW; Ung CY; Xue Y; Li ZR; Han LY; Lin HH; Chen YZ
    J Pharm Sci; 2007 Nov; 96(11):2838-60. PubMed ID: 17786989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico machine learning methods in drug development.
    Dobchev DA; Pillai GG; Karelson M
    Curr Top Med Chem; 2014; 14(16):1913-22. PubMed ID: 25262800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of compounds with specific pharmacodynamic, pharmacokinetic or toxicological property by statistical learning methods.
    Yap CW; Xue Y; Li H; Li ZR; Ung CY; Han LY; Zheng CJ; Cao ZW; Chen YZ
    Mini Rev Med Chem; 2006 Apr; 6(4):449-59. PubMed ID: 16613581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward in silico structure-based ADMET prediction in drug discovery.
    Moroy G; Martiny VY; Vayer P; Villoutreix BO; Miteva MA
    Drug Discov Today; 2012 Jan; 17(1-2):44-55. PubMed ID: 22056716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.
    Ma XH; Jia J; Zhu F; Xue Y; Li ZR; Chen YZ
    Comb Chem High Throughput Screen; 2009 May; 12(4):344-57. PubMed ID: 19442064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules.
    Khan MT; Sylte I
    Curr Drug Discov Technol; 2007 Oct; 4(3):141-9. PubMed ID: 17985997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual screening for cytochromes p450: successes of machine learning filters.
    Burton J; Ijjaali I; Petitet F; Michel A; Vercauteren DP
    Comb Chem High Throughput Screen; 2009 May; 12(4):369-82. PubMed ID: 19442071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of P-glycoprotein substrates by a support vector machine approach.
    Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ
    J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of cytochrome p(450) activities using machine learning methods.
    Hammann F; Gutmann H; Baumann U; Helma C; Drewe J
    Mol Pharm; 2009; 6(6):1920-6. PubMed ID: 19813762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of protein structures in overcoming ADMET-related issues of drug-like compounds.
    Stoll F; Göller AH; Hillisch A
    Drug Discov Today; 2011 Jun; 16(11-12):530-8. PubMed ID: 21554979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools.
    Tao L; Zhang P; Qin C; Chen SY; Zhang C; Chen Z; Zhu F; Yang SY; Wei YQ; Chen YZ
    Adv Drug Deliv Rev; 2015 Jun; 86():83-100. PubMed ID: 26037068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence in drug design.
    Zhong F; Xing J; Li X; Liu X; Fu Z; Xiong Z; Lu D; Wu X; Zhao J; Tan X; Li F; Luo X; Li Z; Chen K; Zheng M; Jiang H
    Sci China Life Sci; 2018 Oct; 61(10):1191-1204. PubMed ID: 30054833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of human cytochrome p450-mediated drug metabolism using unsupervised machine learning approach.
    Korolev D; Balakin KV; Nikolsky Y; Kirillov E; Ivanenkov YA; Savchuk NP; Ivashchenko AA; Nikolskaya T
    J Med Chem; 2003 Aug; 46(17):3631-43. PubMed ID: 12904067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of in silico drug-likeness predictions in pharmaceutical research.
    Tian S; Wang J; Li Y; Li D; Xu L; Hou T
    Adv Drug Deliv Rev; 2015 Jun; 86():2-10. PubMed ID: 25666163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ranking chemical structures for drug discovery: a new machine learning approach.
    Agarwal S; Dugar D; Sengupta S
    J Chem Inf Model; 2010 May; 50(5):716-31. PubMed ID: 20387860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity.
    Han L; Cui J; Lin H; Ji Z; Cao Z; Li Y; Chen Y
    Proteomics; 2006 Jul; 6(14):4023-37. PubMed ID: 16791826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning techniques and drug design.
    Gertrudes JC; Maltarollo VG; Silva RA; Oliveira PR; Honório KM; da Silva AB
    Curr Med Chem; 2012; 19(25):4289-97. PubMed ID: 22830342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties.
    Yap CW; Li H; Ji ZL; Chen YZ
    Mini Rev Med Chem; 2007 Nov; 7(11):1097-107. PubMed ID: 18045213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions.
    Zernov VV; Balakin KV; Ivaschenko AA; Savchuk NP; Pletnev IV
    J Chem Inf Comput Sci; 2003; 43(6):2048-56. PubMed ID: 14632457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in machine learning prediction of toxicological properties and adverse drug reactions of pharmaceutical agents.
    Ma XH; Wang R; Xue Y; Li ZR; Yang SY; Wei YQ; Chen YZ
    Curr Drug Saf; 2008 May; 3(2):100-14. PubMed ID: 18690988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.