These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1778853)

  • 1. Physiological effects of metronidazole on Clostridium pasteurianum.
    Church DL; Bryant RD; Rabin HR; Laishley EJ
    J Antimicrob Chemother; 1991 Aug; 28(2):221-8. PubMed ID: 1778853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum.
    Colin T; Bories A; Lavigne C; Moulin G
    Curr Microbiol; 2001 Oct; 43(4):238-43. PubMed ID: 11683356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of metronidazole on hydrogen production by Clostridium acetobutylicum.
    O'Brien RW; Morris JG
    Arch Mikrobiol; 1972; 84(3):225-33. PubMed ID: 5052040
    [No Abstract]   [Full Text] [Related]  

  • 4. Clostridium thermobutyricum: growth studies and stimulation of butyrate formation by acetate supplementation.
    Canganella F; Kuk SU; Morgan H; Wiegel J
    Microbiol Res; 2002; 157(2):149-56. PubMed ID: 12002403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate utilization by Clostridium estertheticum cultivated in meat juice medium.
    Yang X; Balamurugan S; Gill CO
    Int J Food Microbiol; 2009 Jan; 128(3):501-5. PubMed ID: 19027974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermentation.
    Moscoviz R; de Fouchécour F; Santa-Catalina G; Bernet N; Trably E
    Sci Rep; 2017 Mar; 7():44334. PubMed ID: 28287150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production.
    Chin HL; Chen ZS; Chou CP
    Biotechnol Prog; 2003; 19(2):383-8. PubMed ID: 12675576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of (E)-2-butenoate (crotonate) by Clostridium kluyveri and some other Clostridium species.
    Bader J; Günther H; Schleicher E; Simon H; Pohl S; Mannheim W
    Arch Microbiol; 1980 Mar; 125(1-2):159-65. PubMed ID: 7387331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor.
    Ukpong MN; Atiyeh HK; De Lorme MJ; Liu K; Zhu X; Tanner RS; Wilkins MR; Stevenson BS
    Biotechnol Bioeng; 2012 Nov; 109(11):2720-8. PubMed ID: 22566280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium pascui sp. nov., a new glutamate-fermenting sporeformer from a pasture in Pakistan.
    Wilde E; Collins MD; Hippe H
    Int J Syst Bacteriol; 1997 Jan; 47(1):164-70. PubMed ID: 8995820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors.
    Detman A; Mielecki D; Chojnacka A; Salamon A; Błaszczyk MK; Sikora A
    Microb Cell Fact; 2019 Feb; 18(1):36. PubMed ID: 30760264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13C NMR studies of butyric fermentation in Clostridium kluyveri.
    Smith GM; Kim BW; Franke AA; Roberts JD
    J Biol Chem; 1985 Nov; 260(25):13509-12. PubMed ID: 4055746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark fermentation: isolation and characterization of hydrogen-producing strains from sludges.
    Rajhi H; Conthe M; Puyol D; Díaz E; Sanz JL
    Int Microbiol; 2013 Mar; 16(1):53-62. PubMed ID: 24151782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the phosphoroclastic reaction of Clostridium pasteurianum in the reduction of metronidazole.
    Lockerby DL; Rabin HR; Laishley EJ
    Antimicrob Agents Chemother; 1985 May; 27(5):863-7. PubMed ID: 4015076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fermentation of calcium salts of acetic and butyric acids by Clostridium acetobutylicum].
    NAKHMANOVICH BM; SHCHBLYKINA NA
    Mikrobiologiia; 1960; 29():67-72. PubMed ID: 14425929
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolic and proteomic analyses of product selectivity and redox regulation in Clostridium pasteurianum grown on glycerol under varied iron availability.
    Groeger C; Wang W; Sabra W; Utesch T; Zeng AP
    Microb Cell Fact; 2017 Apr; 16(1):64. PubMed ID: 28424096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of recombinant Clostridium acetobutylicum with increased dosages of butyrate formation genes.
    Walter KA; Mermelstein LD; Papoutsakis ET
    Ann N Y Acad Sci; 1994 May; 721():69-72. PubMed ID: 8010698
    [No Abstract]   [Full Text] [Related]  

  • 18. Microbial consortia for hydrogen production enhancement.
    Rajhi H; Díaz EE; Rojas P; Sanz JL
    Curr Microbiol; 2013 Jul; 67(1):30-5. PubMed ID: 23397222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeoviscous response of Clostridium pasteurianum to butanol toxicity during glycerol fermentation.
    Venkataramanan KP; Kurniawan Y; Boatman JJ; Haynes CH; Taconi KA; Martin L; Bothun GD; Scholz C
    J Biotechnol; 2014 Jun; 179():8-14. PubMed ID: 24637368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the butyric acid metabolism of Clostridium acetobutylicum.
    Lehmann D; Radomski N; Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1325-39. PubMed ID: 22576943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.