These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17789001)

  • 1. Different Red Light Requirements for Phytochrome-Induced Accumulation of cab RNA and rbcS RNA.
    Kaufman LS; Thompson WF; Briggs WR
    Science; 1984 Dec; 226(4681):1447-9. PubMed ID: 17789001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of the accumulation of the light-harvesting chlorophyll a/b complex and ribulose bisphosphate carboxylase/oxygenase in greening pea leaves.
    Bennett J; Jenkins GI; Hartley MR
    J Cell Biochem; 1984; 25(1):1-13. PubMed ID: 6470048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organ-specific and light-induced expression of plant genes.
    Fluhr R; Kuhlemeier C; Nagy F; Chua NH
    Science; 1986 May; 232(4754):1106-12. PubMed ID: 17754498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytochrome Regulation of Greening in Pisum: Chlorophyll Accumulation and Abundance of mRNA for the Light-Harvesting Chlorophyll a/b Binding Proteins.
    Horwitz BA; Thompson WF; Briggs WR
    Plant Physiol; 1988 Jan; 86(1):299-305. PubMed ID: 16665885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytochrome control of specific mRNA levels in developing pea buds : the presence of both very low fluence and low fluence responses.
    Kaufman LS; Briggs WR; Thompson WF
    Plant Physiol; 1985 Jun; 78(2):388-93. PubMed ID: 16664251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytochrome Control of Specific mRNA levels in Developing Pea Buds : Kinetics of Accumulation, Reciprocity, and Escape Kinetics of the Low Fluence Response.
    Kaufman LS; Roberts LL; Briggs WR; Thompson WF
    Plant Physiol; 1986 Aug; 81(4):1033-8. PubMed ID: 16664939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPA1, a component of phytochrome A signal transduction, regulates the light signaling current.
    Baumgardt RL; Oliverio KA; Casal JJ; Hoecker U
    Planta; 2002 Sep; 215(5):745-53. PubMed ID: 12244439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light quality influences indigo precursors production and seed germination in Isatis tinctoria L. and Isatis indigotica Fort.
    Tozzi S; Lercari B; Angelini LG
    Photochem Photobiol; 2005; 81(4):914-9. PubMed ID: 15745425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreceptors controlling transcription of rbcS genes in green leaf tissue of Pisum sativum.
    Clugston CK; Barnett LK; Urwin NA; Jenkins GI
    Photochem Photobiol; 1990 Jul; 52(1):23-8. PubMed ID: 2399284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental regulation of two genes encoding ribulose-bisphosphate carboxylase small subunit in pea and transgenic petunia plants: Phytochrome response and blue-light induction.
    Fluhr R; Chua NH
    Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2358-62. PubMed ID: 16593682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochrome-controlled expression of a wheat Cab gene in transgenic tobacco seedlings.
    Nagy F; Kay SA; Boutry M; Hsu MY; Chua NH
    EMBO J; 1986 Jun; 5(6):1119-24. PubMed ID: 15966098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The circadian oscillator is regulated by a very low fluence response of phytochrome in wheat.
    Nagy F; Fejes E; Wehmeyer B; Dallman G; Schafer E
    Proc Natl Acad Sci U S A; 1993 Jul; 90(13):6290-4. PubMed ID: 11607411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The expression of light-regulated genes in the high-pigment-1 mutant of tomato.
    Peters JL; Szell M; Kendrick RE
    Plant Physiol; 1998 Jul; 117(3):797-807. PubMed ID: 9662522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Independent Expression of cab and rbcS Genes in Dark-Grown Pine Seedlings.
    Yamamoto N; Mukai Y; Matsuoka M; Kano-Murakami Y; Tanaka Y; Ohashi Y; Ozeki Y; Odani K
    Plant Physiol; 1991 Feb; 95(2):379-83. PubMed ID: 16667994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene.
    Gao J; Kaufman LS
    Plant Physiol; 1994 Apr; 104(4):1251-1257. PubMed ID: 12232164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of phytochrome-regulated gene expression in a photoautotrophic cell suspension: possible role for calmodulin.
    Lam E; Benedyk M; Chua NH
    Mol Cell Biol; 1989 Nov; 9(11):4819-23. PubMed ID: 2689868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome control of RNA levels in developing pea and mung-bean leaves.
    Thompson WF; Everett M; Polans NO; Jorgensen RA; Palmer JD
    Planta; 1983 Aug; 158(6):487-500. PubMed ID: 24264922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization in the Tomato Genome of DNA Restriction Fragments Containing Sequences Homologous to the rRNA (45s), the Major Chlorophyll a/b Binding Polypeptide and the Ribulose Bisphosphate Carboxylase Genes.
    Vallejos CE; Tanksley SD; Bernatzky R
    Genetics; 1986 Jan; 112(1):93-105. PubMed ID: 17246311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf development and phytochrome modulate the activation ofpsbD-psbC transcription by high-fluence blue light in barley chloroplasts.
    Christopher DA
    Photosynth Res; 1996 Mar; 47(3):239-51. PubMed ID: 24301991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual Members of the Cab Gene Family Differ Widely in Fluence Response.
    White MJ; Kaufman LS; Horwitz BA; Briggs WR; Thompson WF
    Plant Physiol; 1995 Jan; 107(1):161-165. PubMed ID: 12228352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.