These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 1778948)

  • 1. Transcapillary fluid shifts in tissues of the head and neck during and after simulated microgravity.
    Parazynski SE; Hargens AR; Tucker B; Aratow M; Styf J; Crenshaw A
    J Appl Physiol (1985); 1991 Dec; 71(6):2469-75. PubMed ID: 1778948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid shifts and muscle function in humans during acute simulated weightlessness.
    Hargens AR; Tipton CM; Gollnick PD; Mubarak SJ; Tucker BJ; Akeson WH
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Apr; 54(4):1003-9. PubMed ID: 6853275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid shifts in vascular and extravascular spaces during and after simulated weightlessness.
    Hargens AR
    Med Sci Sports Exerc; 1983; 15(5):421-7. PubMed ID: 6645873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt.
    Watkins W; Hargens AR; Seidl S; Clary EM; Macias BR
    J Appl Physiol (1985); 2017 Jul; 123(1):260-266. PubMed ID: 28495841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling steady-state intracranial pressures in supine, head-down tilt and microgravity conditions.
    Stevens SA; Lakin WD; Penar PL
    Aviat Space Environ Med; 2005 Apr; 76(4):329-38. PubMed ID: 15828631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rat cardiovascular responses to whole body suspension: head-down and non-head-down tilt.
    Musacchia XJ; Steffen JM; Dombrowski J
    J Appl Physiol (1985); 1992 Oct; 73(4):1504-9. PubMed ID: 1447098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of autonomic responses in humans induced by two simulation models of weightlessness: lower body positive pressure and 6 degrees head-down tilt.
    Fu Q; Sugiyama Y; Kamiya A; Mano T
    J Auton Nerv Syst; 2000 Apr; 80(1-2):101-7. PubMed ID: 10742547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow velocity in humans exposed to 24 h of head-down tilt.
    Kawai Y; Murthy G; Watenpaugh DE; Breit GA; Deroshia CW; Hargens AR
    J Appl Physiol (1985); 1993 Jun; 74(6):3046-51. PubMed ID: 8366006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma colloid osmotic pressure increases in humans during simulated microgravity.
    Hsieh ST; Ballard RE; Murthy G; Hargens AR; Convertino VA
    Aviat Space Environ Med; 1998 Jan; 69(1):23-6. PubMed ID: 9490611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraocular and intracranial pressures during head-down tilt with lower body negative pressure.
    Macias BR; Liu JH; Grande-Gutierrez N; Hargens AR
    Aerosp Med Hum Perform; 2015 Jan; 86(1):3-7. PubMed ID: 25565526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracranial and Intraocular Pressure During Various Degrees of Head-Down Tilt.
    Marshall-Goebel K; Mulder E; Bershad E; Laing C; Eklund A; Malm J; Stern C; Rittweger J
    Aerosp Med Hum Perform; 2017 Jan; 88(1):10-16. PubMed ID: 28061916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated microgravity increases cutaneous blood flow in the head and leg of humans.
    Stout MS; Watenpaugh DE; Breit GA; Hargens AR
    Aviat Space Environ Med; 1995 Sep; 66(9):872-5. PubMed ID: 7487826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone microvascular flow differs from skin microvascular flow in response to head-down tilt.
    Howden M; Siamwala JH; Hargens AR
    J Appl Physiol (1985); 2017 Oct; 123(4):860-866. PubMed ID: 28663380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower body negative pressure reduces optic nerve sheath diameter during head-down tilt.
    Marshall-Goebel K; Terlević R; Gerlach DA; Kuehn S; Mulder E; Rittweger J
    J Appl Physiol (1985); 2017 Nov; 123(5):1139-1144. PubMed ID: 28818998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of body posture on transcapillary pressures in human subcutaneous tissue.
    Noddeland H
    Scand J Clin Lab Invest; 1982 Apr; 42(2):131-8. PubMed ID: 7134797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Venoconstrictive thigh cuffs impede fluid shifts during simulated microgravity.
    Lindgren KN; Kraft D; Ballard RE; Tucker A; Hargens AR
    Aviat Space Environ Med; 1998 Nov; 69(11):1052-8. PubMed ID: 9819160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forces involved in transcapillary fluid movement in exercising cat skeletal muscle.
    Björnberg J
    Acta Physiol Scand; 1990 Oct; 140(2):221-36. PubMed ID: 2267951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt.
    Siamwala JH; Lee PC; Macias BR; Hargens AR
    J Appl Physiol (1985); 2015 Jul; 119(2):101-9. PubMed ID: 25930022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of active lymph pump by simulated microgravity in rats.
    Gashev AA; Delp MD; Zawieja DC
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2295-308. PubMed ID: 16399874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 6 degrees head-down tilt on cardiopulmonary function: comparison with microgravity.
    Prisk GK; Fine JM; Elliott AR; West JB
    Aviat Space Environ Med; 2002 Jan; 73(1):8-16. PubMed ID: 11817623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.