BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 1778948)

  • 1. Transcapillary fluid shifts in tissues of the head and neck during and after simulated microgravity.
    Parazynski SE; Hargens AR; Tucker B; Aratow M; Styf J; Crenshaw A
    J Appl Physiol (1985); 1991 Dec; 71(6):2469-75. PubMed ID: 1778948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid shifts and muscle function in humans during acute simulated weightlessness.
    Hargens AR; Tipton CM; Gollnick PD; Mubarak SJ; Tucker BJ; Akeson WH
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Apr; 54(4):1003-9. PubMed ID: 6853275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid shifts in vascular and extravascular spaces during and after simulated weightlessness.
    Hargens AR
    Med Sci Sports Exerc; 1983; 15(5):421-7. PubMed ID: 6645873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt.
    Watkins W; Hargens AR; Seidl S; Clary EM; Macias BR
    J Appl Physiol (1985); 2017 Jul; 123(1):260-266. PubMed ID: 28495841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling steady-state intracranial pressures in supine, head-down tilt and microgravity conditions.
    Stevens SA; Lakin WD; Penar PL
    Aviat Space Environ Med; 2005 Apr; 76(4):329-38. PubMed ID: 15828631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rat cardiovascular responses to whole body suspension: head-down and non-head-down tilt.
    Musacchia XJ; Steffen JM; Dombrowski J
    J Appl Physiol (1985); 1992 Oct; 73(4):1504-9. PubMed ID: 1447098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of autonomic responses in humans induced by two simulation models of weightlessness: lower body positive pressure and 6 degrees head-down tilt.
    Fu Q; Sugiyama Y; Kamiya A; Mano T
    J Auton Nerv Syst; 2000 Apr; 80(1-2):101-7. PubMed ID: 10742547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow velocity in humans exposed to 24 h of head-down tilt.
    Kawai Y; Murthy G; Watenpaugh DE; Breit GA; Deroshia CW; Hargens AR
    J Appl Physiol (1985); 1993 Jun; 74(6):3046-51. PubMed ID: 8366006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma colloid osmotic pressure increases in humans during simulated microgravity.
    Hsieh ST; Ballard RE; Murthy G; Hargens AR; Convertino VA
    Aviat Space Environ Med; 1998 Jan; 69(1):23-6. PubMed ID: 9490611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraocular and intracranial pressures during head-down tilt with lower body negative pressure.
    Macias BR; Liu JH; Grande-Gutierrez N; Hargens AR
    Aerosp Med Hum Perform; 2015 Jan; 86(1):3-7. PubMed ID: 25565526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracranial and Intraocular Pressure During Various Degrees of Head-Down Tilt.
    Marshall-Goebel K; Mulder E; Bershad E; Laing C; Eklund A; Malm J; Stern C; Rittweger J
    Aerosp Med Hum Perform; 2017 Jan; 88(1):10-16. PubMed ID: 28061916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated microgravity increases cutaneous blood flow in the head and leg of humans.
    Stout MS; Watenpaugh DE; Breit GA; Hargens AR
    Aviat Space Environ Med; 1995 Sep; 66(9):872-5. PubMed ID: 7487826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone microvascular flow differs from skin microvascular flow in response to head-down tilt.
    Howden M; Siamwala JH; Hargens AR
    J Appl Physiol (1985); 2017 Oct; 123(4):860-866. PubMed ID: 28663380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower body negative pressure reduces optic nerve sheath diameter during head-down tilt.
    Marshall-Goebel K; Terlević R; Gerlach DA; Kuehn S; Mulder E; Rittweger J
    J Appl Physiol (1985); 2017 Nov; 123(5):1139-1144. PubMed ID: 28818998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of body posture on transcapillary pressures in human subcutaneous tissue.
    Noddeland H
    Scand J Clin Lab Invest; 1982 Apr; 42(2):131-8. PubMed ID: 7134797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Venoconstrictive thigh cuffs impede fluid shifts during simulated microgravity.
    Lindgren KN; Kraft D; Ballard RE; Tucker A; Hargens AR
    Aviat Space Environ Med; 1998 Nov; 69(11):1052-8. PubMed ID: 9819160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forces involved in transcapillary fluid movement in exercising cat skeletal muscle.
    Björnberg J
    Acta Physiol Scand; 1990 Oct; 140(2):221-36. PubMed ID: 2267951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt.
    Siamwala JH; Lee PC; Macias BR; Hargens AR
    J Appl Physiol (1985); 2015 Jul; 119(2):101-9. PubMed ID: 25930022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of active lymph pump by simulated microgravity in rats.
    Gashev AA; Delp MD; Zawieja DC
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2295-308. PubMed ID: 16399874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 6 degrees head-down tilt on cardiopulmonary function: comparison with microgravity.
    Prisk GK; Fine JM; Elliott AR; West JB
    Aviat Space Environ Med; 2002 Jan; 73(1):8-16. PubMed ID: 11817623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.