BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1779057)

  • 1. Synthesis and biohydrogenation of fatty acids by ruminal microorganisms in vitro.
    Wu Z; Palmquist DL
    J Dairy Sci; 1991 Sep; 74(9):3035-46. PubMed ID: 1779057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows.
    Wu Z; Ohajuruka OA; Palmquist DL
    J Dairy Sci; 1991 Sep; 74(9):3025-34. PubMed ID: 1779056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep.
    Chikunya S; Demirel G; Enser M; Wood JD; Wilkinson RG; Sinclair LA
    Br J Nutr; 2004 Apr; 91(4):539-50. PubMed ID: 15035681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents.
    Beam TM; Jenkins TC; Moate PJ; Kohn RA; Palmquist DL
    J Dairy Sci; 2000 Nov; 83(11):2564-73. PubMed ID: 11104276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation.
    Kim EJ; Sanderson R; Dhanoa MS; Dewhurst RJ
    J Dairy Sci; 2005 Sep; 88(9):3220-30. PubMed ID: 16107412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dietary fat and protein on fatty acid flow to the duodenum and in milk produced by dairy cows.
    Klusmeyer TH; Clark JH
    J Dairy Sci; 1991 Sep; 74(9):3055-67. PubMed ID: 1779059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins.
    Vasta V; Mele M; Serra A; Scerra M; Luciano G; Lanza M; Priolo A
    J Anim Sci; 2009 Aug; 87(8):2674-84. PubMed ID: 19395521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dietary n-6:n-3 fatty acid ratio on feed intake, digestibility, and fatty acid profiles of the ruminal contents, liver, and muscle of growing lambs.
    Kim SC; Adesogan AT; Badinga L; Staples CR
    J Anim Sci; 2007 Mar; 85(3):706-16. PubMed ID: 17121972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance of fatty acyl amides to degradation and hydrogenation by ruminal microorganisms.
    Fotouhi N; Jenkins TC
    J Dairy Sci; 1992 Jun; 75(6):1527-32. PubMed ID: 1500556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruminal fermentation in vivo as influenced by long-chain fatty acids.
    Chalupa W; Vecchiarelli B; Elser AE; Kronfeld DS; Sklan D; Palmquist DL
    J Dairy Sci; 1986 May; 69(5):1293-301. PubMed ID: 3722545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows.
    Oelker ER; Reveneau C; Firkins JL
    J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state rates of linoleic acid biohydrogenation by ruminal bacteria in continuous culture.
    Fellner V; Sauer FD; Kramer JK
    J Dairy Sci; 1995 Aug; 78(8):1815-23. PubMed ID: 8786265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid flow to the duodenum and in milk from cows fed diets that contained fat and nicotinic acid.
    Christensen RA; Clark JH; Drackley JK; Blum SA
    J Dairy Sci; 1998 Apr; 81(4):1078-88. PubMed ID: 9594396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins.
    Khiaosa-Ard R; Bryner SF; Scheeder MR; Wettstein HR; Leiber F; Kreuzer M; Soliva CR
    J Dairy Sci; 2009 Jan; 92(1):177-88. PubMed ID: 19109277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows.
    Kalscheur KF; Teter BB; Piperova LS; Erdman RA
    J Dairy Sci; 1997 Sep; 80(9):2104-14. PubMed ID: 9313153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis.
    Karnati SK; Sylvester JT; Ribeiro CV; Gilligan LE; Firkins JL
    J Dairy Sci; 2009 Aug; 92(8):3849-60. PubMed ID: 19620669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dietary fat and calcium source on insoluble soap formation in the rumen.
    Palmquist DL; Jenkins TC; Joyner AE
    J Dairy Sci; 1986 Apr; 69(4):1020-5. PubMed ID: 3722526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids in freeze-dried grass.
    Vlaeminck B; Mengistu G; Fievez V; de Jonge L; Dijkstra J
    J Dairy Sci; 2008 Mar; 91(3):1122-32. PubMed ID: 18292268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major advances in nutrition: impact on milk composition.
    Jenkins TC; McGuire MA
    J Dairy Sci; 2006 Apr; 89(4):1302-10. PubMed ID: 16537962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical note: stearidonic acid metabolism by mixed ruminal microorganisms in vitro.
    Maia MR; Correia CA; Alves SP; Fonseca AJ; Cabrita AR
    J Anim Sci; 2012 Mar; 90(3):900-4. PubMed ID: 22021809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.