BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17792607)

  • 21. Variations and trends of biologically effective doses of solar ultraviolet radiation in Asia, Europe and South America from 1999 to 2007.
    Munakata N; Kazadzis S; Bolseé D; Schuch N; Koskela T; Karpetchko A; Meleti C; Casiccia C; Barcellos da Rosa M; Saida T; Nishigori C; Ogata K; Imafuku K; Liu CM; Lestari S; Kanoko M; Cornain S; Mulyadi K; Hieda K
    Photochem Photobiol Sci; 2009 Aug; 8(8):1117-24. PubMed ID: 19639113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.
    Rozema J; Boelen P; Blokker P
    Environ Pollut; 2005 Oct; 137(3):428-42. PubMed ID: 16005756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Updated analysis of data from Palmer Station, Antarctica (64° S), and San Diego, California (32° N), confirms large effect of the Antarctic ozone hole on UV radiation.
    Bernhard GH; McKenzie RL; Lantz K; Stierle S
    Photochem Photobiol Sci; 2022 Mar; 21(3):373-384. PubMed ID: 35195892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous dosimetry of the biologically harmful UV-radiation in Antarctica with the biofilm technique.
    Quintern LE; Puskeppeleit M; Rainer P; Weber S; el Naggar S; Eschweiler U; Horneck G
    J Photochem Photobiol B; 1994 Jan; 22(1):59-66. PubMed ID: 8151457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intensity of solar ultraviolet radiation and its implications for skin cancer.
    McKenzie RL; Elwood JM
    N Z Med J; 1990 Apr; 103(887):152-4. PubMed ID: 2342671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.
    Wilson SR; Solomon KR; Tang X
    Photochem Photobiol Sci; 2007 Mar; 6(3):301-10. PubMed ID: 17344964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal fluctuation of DNA photodamage in marine plankton assemblages at Palmer Station, Antarctica.
    Meador J; Jeffrey WH; Kase JP; Pakulski JD; Chiarello S; Mitchell DL
    Photochem Photobiol; 2002 Mar; 75(3):266-71. PubMed ID: 11950092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global trends in total ozone.
    Bowman KP
    Science; 1988 Jan; 239(4835):48-50. PubMed ID: 17820629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Ozone decline and UV increase].
    Winkler P; Trepte S
    Gesundheitswesen; 2004 Feb; 66 Suppl 1():S31-6. PubMed ID: 14770335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthetically active sunlight at high southern latitudes.
    Frederick JE; Liao Y
    Photochem Photobiol; 2005; 81(3):603-8. PubMed ID: 15689179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal variations in UV-absorbing compounds and physiological characteristics in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia over a 3-year period.
    Núñez-Olivera E; Otero S; Tomás R; Martínez-Abaigar J
    Physiol Plant; 2009 May; 136(1):73-85. PubMed ID: 19374718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The signs of Antarctic ozone hole recovery.
    Kuttippurath J; Nair PJ
    Sci Rep; 2017 Apr; 7(1):585. PubMed ID: 28373709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human exposure to solar ultraviolet radiation.
    Diffey BL
    J Cosmet Dermatol; 2002 Oct; 1(3):124-30. PubMed ID: 17147711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atmospheric science. Ozone and climate change.
    Karoly DJ
    Science; 2003 Oct; 302(5643):236-7. PubMed ID: 14551423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solar ultraviolet-B radiation in urban environments: the case of Baltimore, Maryland.
    Heisler GM; Grant RH; Gao W; Slusser JR
    Photochem Photobiol; 2004; 80(3):422-8. PubMed ID: 15623324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of DNA dosimetry to assess ozone-mediated variability of biologically harmful radiation in Antarctica.
    George AL; Peat HJ; Buma AG
    Photochem Photobiol; 2002 Sep; 76(3):274-80. PubMed ID: 12403448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antarctic total ozone in 1958.
    Newman PA
    Science; 1994 Apr; 264(5158):543-6. PubMed ID: 17732736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation.
    Cullen JJ; Neale PJ; Lesser MP
    Science; 1992 Oct; 258(5082):646-50. PubMed ID: 17748901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contrasts between Antarctic and Arctic ozone depletion.
    Solomon S; Portmann RW; Thompson DW
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):445-9. PubMed ID: 17202269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free Radicals Within the Antarctic Vortex: The Role of CFCs in Antarctic Ozone Loss.
    Anderson JG; Toohey DW; Brune WH
    Science; 1991 Jan; 251(4989):39-46. PubMed ID: 17778601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.