These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17794122)

  • 1. Temperatures of desert plants: another perspective on the adaptability of leaf size.
    Smith WK
    Science; 1978 Aug; 201(4356):614-6. PubMed ID: 17794122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes.
    Xiong FS; Mueller EC; Day TA
    Am J Bot; 2000 May; 87(5):700-10. PubMed ID: 10811794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant transpiration at high elevations: Theory, field measurements, and comparisons with desert plants.
    Smith WK; Geller GN
    Oecologia; 1979 Jul; 41(1):109-122. PubMed ID: 28310364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M; Niinemets U; Cescatti A
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Studies on compensation in medicinal plants. Compensative effects in leaves of Papaver somniferum L. on photosynthetic and transpiration rates].
    Iida O; Hatakeyama Y
    Eisei Shikenjo Hokoku; 1994; (112):97-101. PubMed ID: 8854908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures.
    Yamori W; Noguchi K; Hanba YT; Terashima I
    Plant Cell Physiol; 2006 Aug; 47(8):1069-80. PubMed ID: 16816408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat and gas exchanges between plants and atmosphere under microgravity conditions.
    Kitaya Y; Kawai M; Takahashi H; Tani A; Goto E; Saito T; Shibuya T; Kiyota M
    Ann N Y Acad Sci; 2006 Sep; 1077():244-55. PubMed ID: 17124128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry.
    Dwyer SA; Ghannoum O; Nicotra A; von Caemmerer S
    Plant Cell Environ; 2007 Jan; 30(1):53-66. PubMed ID: 17177876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthesis of young apple trees in response to low sink demand under different air temperatures.
    Fan PG; Li LS; Duan W; Li WD; Li SH
    Tree Physiol; 2010 Mar; 30(3):313-25. PubMed ID: 20071359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance.
    Costa E Silva F; Shvaleva A; Broetto F; Ortuño MF; Rodrigues ML; Almeida MH; Chaves MM; Pereira JS
    Tree Physiol; 2009 Jan; 29(1):77-86. PubMed ID: 19203934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and indirect climate change effects on photosynthesis and transpiration.
    Kirschbaum MU
    Plant Biol (Stuttg); 2004 May; 6(3):242-53. PubMed ID: 15143433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves.
    Zaragoza-Castells J; Sánchez-Gómez D; Valladares F; Hurry V; Atkin OK
    Plant Cell Environ; 2007 Jul; 30(7):820-33. PubMed ID: 17547654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species.
    Yamori W; Noguchi K; Hikosaka K; Terashima I
    Plant Cell Physiol; 2009 Feb; 50(2):203-15. PubMed ID: 19054809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub.
    Ehleringer JR; Mooney HA
    Oecologia; 1978 Jan; 37(2):183-200. PubMed ID: 28309649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greater impact of extreme drought on photosynthesis of grasslands exposed to a warmer climate in spite of acclimation.
    Zavalloni C; Gielen B; De Boeck HJ; Lemmens CM; Ceulemans R; Nijs I
    Physiol Plant; 2009 May; 136(1):57-72. PubMed ID: 19374719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The temperature response of C(3) and C(4) photosynthesis.
    Sage RF; Kubien DS
    Plant Cell Environ; 2007 Sep; 30(9):1086-106. PubMed ID: 17661749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas exchange characteristics and temperature relations of two desert annuals: A comparison of a winter-active and a summer-active species.
    Toft NL; Pearcy RW
    Oecologia; 1982 Nov; 55(2):170-177. PubMed ID: 28311230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature effects on leaf physiology and survivorship in the C3 and C4 subspecies of Alloteropsis semialata.
    Osborne CP; Wythe EJ; Ibrahim DG; Gilbert ME; Ripley BS
    J Exp Bot; 2008; 59(7):1743-54. PubMed ID: 18403381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant temperatures and heat flux in a Sonoran Desert ecosystem.
    Gibbs JG; Patten DT
    Oecologia; 1970 Sep; 5(3):165-184. PubMed ID: 28309818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.