These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1779418)

  • 1. A visually evoked escape response of the housefly.
    Holmqvist MH; Srinivasan MV
    J Comp Physiol A; 1991 Oct; 169(4):451-9. PubMed ID: 1779418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A visually elicited escape response in the fly that does not use the giant fiber pathway.
    Holmqvist MH
    Vis Neurosci; 1994; 11(6):1149-61. PubMed ID: 7841123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish.
    Temizer I; Donovan JC; Baier H; Semmelhack JL
    Curr Biol; 2015 Jul; 25(14):1823-34. PubMed ID: 26119746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli.
    Scarano F; Tomsic D
    J Physiol Paris; 2014; 108(2-3):141-7. PubMed ID: 25220660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The angular orientation of the movement detectors acting on the flight lift response in flies.
    Wehrhahn C
    Biol Cybern; 1978 Dec; 31(3):169-73. PubMed ID: 728497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of visual information by house flies, Musca domestica (Diptera: muscidae), foraging in resource patches.
    Conlon D; Bell WJ
    J Comp Physiol A; 1991 Mar; 168(3):365-71. PubMed ID: 2066908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luring houseflies (Musca domestica) to traps: do cuticular hydrocarbons and visual cues increase catch?
    Hanley ME; Cruickshanks KL; Dunn D; Stewart-Jones A; Goulson D
    Med Vet Entomol; 2009 Mar; 23(1):26-33. PubMed ID: 19067795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Range perception through apparent image speed in freely flying honeybees.
    Srinivasan MV; Lehrer M; Kirchner WH; Zhang SW
    Vis Neurosci; 1991 May; 6(5):519-35. PubMed ID: 2069903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landing reaction of Musca domestica. IV. A monocular and binocular vision; B. relationships between landing and optomotor reactions.
    Taddei-Ferretti C; Perez de Talens AF
    Z Naturforsch C; 1973; 28(9):579-92. PubMed ID: 4272299
    [No Abstract]   [Full Text] [Related]  

  • 10. Exploitation of an ancient escape circuit by an avian predator: relationships between taxon-specific prey escape circuits and the sensitivity to visual cues from the predator.
    Jabłoński PG; Strausfeld NJ
    Brain Behav Evol; 2001; 58(4):218-40. PubMed ID: 11964498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics.
    Hausen K; Wehrhahn C
    J Neurosci; 1989 Nov; 9(11):3828-36. PubMed ID: 2585057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time to collision is signalled by neurons in the nucleus rotundus of pigeons.
    Wang Y; Frost BJ
    Nature; 1992 Mar; 356(6366):236-8. PubMed ID: 1552942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions.
    Hausen K; Wehrhahn C
    J Neurosci; 1990 Jan; 10(1):351-60. PubMed ID: 2299398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic and predictive links between touch and vision.
    Gray R; Tan HZ
    Exp Brain Res; 2002 Jul; 145(1):50-5. PubMed ID: 12070744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual afferences to flight steering muscles controlling optomotor responses of the fly.
    Egelhaaf M
    J Comp Physiol A; 1989 Oct; 165(6):719-30. PubMed ID: 2810146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electronic device for monitoring escape behaviour in Musca and Drosophila.
    Snowball MF; Holmqvist MH
    J Neurosci Methods; 1994 Jan; 51(1):91-4. PubMed ID: 8189754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field.
    Wehrhahn C
    Biol Cybern; 1978 Jun; 29(4):237-47. PubMed ID: 678593
    [No Abstract]   [Full Text] [Related]  

  • 18. Visual edge orientation shapes free-flight behavior in Drosophila.
    Frye MA; Dickinson MH
    Fly (Austin); 2007; 1(3):153-4. PubMed ID: 18820449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term light adaptation in photoreceptors of the housefly, Musca domestica.
    Burton BG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Aug; 188(7):527-38. PubMed ID: 12209341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visually mediated motor planning in the escape response of Drosophila.
    Card G; Dickinson MH
    Curr Biol; 2008 Sep; 18(17):1300-7. PubMed ID: 18760606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.