These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Distribution of micro-essential (Fe, Cu, Zn) and toxic (Hg) metals in tissues of two nutritionally distinct hydrothermal shrimps. Kádár E; Costa V; Santos RS Sci Total Environ; 2006 Apr; 358(1-3):143-50. PubMed ID: 16209883 [TBL] [Abstract][Full Text] [Related]
28. Organics in chimneys and water samples from deep-sea hydrothermal systems: implications for sub-vent biosphere. Horiuchi T; Kobayashi K; Takano Y; Marumo K; Nakashima M; Yamagishi A; Ishibashi J; Urabe T Biol Sci Space; 2003 Oct; 17(3):190-1. PubMed ID: 14676368 [TBL] [Abstract][Full Text] [Related]
29. Deep-sea ecology. Developmental arrest in vent worm embryos. Pradillon F; Shillito B; Young CM; Gaill F Nature; 2001 Oct; 413(6857):698-9. PubMed ID: 11607020 [TBL] [Abstract][Full Text] [Related]
30. Genome complexity and repetitive DNA in metazoans from extreme marine environments. Fielman KT; Marsh AG Gene; 2005 Dec; 362():98-108. PubMed ID: 16188403 [TBL] [Abstract][Full Text] [Related]
31. High contents of hypotaurine and thiotaurine in hydrothermal-vent gastropods without thiotrophic endosymbionts. Rosenberg NK; Lee RW; Yancey PH J Exp Zool A Comp Exp Biol; 2006 Aug; 305(8):655-62. PubMed ID: 16788898 [TBL] [Abstract][Full Text] [Related]
32. Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Kádár E; Costa V; Segonzac M Sci Total Environ; 2007 Feb; 373(2-3):464-72. PubMed ID: 17229454 [TBL] [Abstract][Full Text] [Related]
33. Ultrastructural and molecular evidence for potentially symbiotic bacteria within the byssal plaques of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus. Kádár E; Bettencourt R Biometals; 2008 Aug; 21(4):395-404. PubMed ID: 18097639 [TBL] [Abstract][Full Text] [Related]
34. Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Zielinski FU; Pernthaler A; Duperron S; Raggi L; Giere O; Borowski C; Dubilier N Environ Microbiol; 2009 May; 11(5):1150-67. PubMed ID: 19226299 [TBL] [Abstract][Full Text] [Related]
35. Off-axis symbiosis found: Characterization and biogeography of bacterial symbionts of Bathymodiolus mussels from Lost City hydrothermal vents. DeChaine EG; Bates AE; Shank TM; Cavanaugh CM Environ Microbiol; 2006 Nov; 8(11):1902-12. PubMed ID: 17014490 [TBL] [Abstract][Full Text] [Related]
36. [Adaptation of organisms to extreme conditions of deep-sea hydrothermal vents]. Minic Z; Serre V; Hervé G C R Biol; 2006 Jul; 329(7):527-40. PubMed ID: 16797459 [TBL] [Abstract][Full Text] [Related]
37. Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13 degrees N hydrothermal vent field, East Pacific Rise. Moussard H; Corre E; Cambon-Bonavita MA; Fouquet Y; Jeanthon C FEMS Microbiol Ecol; 2006 Dec; 58(3):449-63. PubMed ID: 16989658 [TBL] [Abstract][Full Text] [Related]
38. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Johnson KS; Beehler CL; Sakamoto-Arnold CM; Childress JJ Science; 1986 Mar; 231(4742):1139-41. PubMed ID: 17818544 [TBL] [Abstract][Full Text] [Related]
39. Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents. Gaill F; Mann K; Wiedemann H; Engel J; Timpl R J Mol Biol; 1995 Feb; 246(2):284-94. PubMed ID: 7869380 [TBL] [Abstract][Full Text] [Related]